List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transformation relations for the conventional Okqand normalised O'kqStevens operator equivalents with k=1 to 6 and -k⩽q⩽k. Journal of Physics C: Solid State Physics, 1985, 18, 1415-1430.	1.5	298
2	SPIN-HAMILTONIAN FORMALISMS IN ELECTRON MAGNETIC RESONANCE (EMR) AND RELATED SPECTROSCOPIES. Applied Spectroscopy Reviews, 2001, 36, 11-63.	6.7	224
3	On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. Journal of Chemical Physics, 1985, 83, 5192-5197.	3.0	188
4	Gyromagnetic factors and zero-field splitting oft23terms ofCr3+clusters with trigonal symmetry:Al2O3,CsMgCl3, andCsMgBr3. Physical Review B, 1992, 46, 8974-8977.	3.2	188
5	Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2 and d8 ions at low symmetry C3 symmetry sites: V3+ in Al2O3. Journal of Physics and Chemistry of Solids, 2003, 64, 1419-1428.	4.0	166
6	The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements. Journal of Physics Condensed Matter, 2004, 16, 5825-5847.	1.8	137
7	Microscopic study of Cr2+ ion in the quasi-2D mixed system Rb2MnxCr1â^'xCl4. Journal of Magnetism and Magnetic Materials, 1992, 111, 153-163.	2.3	135
8	Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites. Computers & Chemistry, 1992, 16, 207-216.	1.2	130
9	On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites. Journal of Chemical Physics, 1986, 84, 5045-5058.	3.0	129
10	On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators. Journal of Physics C: Solid State Physics, 1987, 20, 6033-6037.	1.5	122
11	Can the low symmetry crystal (ligand) field parameters be considered compatible and reliable?. Journal of Luminescence, 2004, 110, 39-64.	3.1	102
12	The effect of disorder in the local lattice distortions on the EPR and optical spectroscopy parameters for a new Cr3+ defect center in Cr3+:Mg2+:LiNbO3. Physica B: Condensed Matter, 2002, 318, 188-197.	2.7	101
13	Disentangling intricate web of interrelated notions at the interface between the physical (crystal) Tj ETQq1 1 0.78 28-63.	34314 rgB 18.8	T /Overlock 93
14	Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field - perturbation theory methods versus complete diagonalization methods. Journal of Physics Condensed Matter, 2002, 14, 5619-5636.	1.8	86
15	Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?. Physica B: Condensed Matter, 2001, 300, 1-26.	2.7	75
16	Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B: Condensed Matter, 2004, 348, 151-159.	2.7	71
17	Algebraic symmetry and determination of the "Imaginary―crystal-field parameters from optical spectra of fn-ions. Tetragonal symmetry. Chemical Physics, 1985, 97, 43-50.	1.9	66
18	Noether's theorem and conserved quantities for the crystal- and ligand-field Hamiltonians invariant under continuous rotational symmetry. Physical Review B, 2003, 67, .	3.2	63

#	Article	IF	CITATIONS
19	Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications. Physica B: Condensed Matter, 2010, 405, 113-132.	2.7	63
20	On the standardization of crystal-field parameters and the multiple correlated fitting technique: Applications to rare-earth compounds. Physica B: Condensed Matter, 2000, 291, 327-338.	2.7	60
21	Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin–spin and spin–other-orbit interactions for Ni2+(3d8) ions in trigonal crystal fields. Journal of Physics Condensed Matter, 2004, 16, 3481-3494.	1.8	60
22	Superposition model analysis of the zero-field splitting parameters of Fe3+ doped in TlInS2 crystal – Low symmetry aspects. Optical Materials, 2010, 32, 1161-1169.	3.6	59
23	Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis. Chemical Physics Letters, 2012, 524, 49-55.	2.6	55
24	Effect of Monoclinic Symmetry on the EPR Spectra of Gd ³⁺ â€Doped Hydrated Single Crystals of Rareâ€Earth Trichlorides. Physica Status Solidi (B): Basic Research, 1988, 147, 677-684.	1.5	51
25	Transformation relations for the conventional Okq and normalised O'kq Stevens operator equivalents with k = 1 to 6 and -k \$leq\$ q \$leq\$ k. Journal of Physics C: Solid State Physics, 1985, 18, 3837-3837.	1.5	50
26	Ground and excited state absorption of Ni2+ ions in MgAl2O4: Crystal field analysis. Journal of Alloys and Compounds, 2007, 432, 61-68.	5.5	48
27	On the relations between the zero-field splitting parameters in the extended Stevens operator notation and the conventional ones used in EMR for orthorhombic and lower symmetry. Journal of Physics Condensed Matter, 2000, 12, L417-L423.	1.8	47
28	Comprehensive approach to the zero-field splitting ofS6-state ions:Mn2+andFe3+in fluoroperovskites. Physical Review B, 1992, 45, 9736-9748.	3.2	43
29	Superposition model and crystal-field analysis of the4A2anda2E states of Cr3+ions at C3sites in LiNbO3. Journal of Physics Condensed Matter, 1993, 5, 6221-6230.	1.8	43
30	The extended version of the computer package CST for conversions, standardization and transformations of the spin Hamiltonian and the crystal-field Hamiltonian. Computers & Chemistry, 2002, 26, 149-157.	1.2	43
31	Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+. Journal of Physics Condensed Matter, 2006, 18, 5221-5234.	1.8	42
32	Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals. Journal of Physics Condensed Matter, 1999, 11, 273-287.	1.8	41
33	Alternative zero-field splitting (ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry. Journal of Physics and Chemistry of Solids, 2009, 70, 827-833.	4.0	41
34	Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites. Journal of Physics and Chemistry of Solids, 1992, 53, 1227-1236.	4.0	40
35	Crystal field analysis of the 3dN ions at low symmetry sites including the ''imaginary'' terms. Computers in Physics, 1994, 8, 583.	0.5	39
36	Diagonalization of second-rank crystal field terms for 3dN and 4fN ions at triclinic or monoclinic symmetry sites – case study: Cr4+ in Li2MgSiO4 and Nd3+ in β-BaB2O4. Optical Materials, 2008, 31, 391-400.	3.6	39

#	Article	IF	CITATIONS
37	Experimental and Theoretical Investigation of Spinâ€Hamiltonian Parameters for the Low Symmetry Fe ³⁺ Centre in LiNbO ₃ . Physica Status Solidi (B): Basic Research, 1994, 185, 409-415.	1.5	37
38	Monoclinic Spin Hamiltonian Analysis of EPR Spectra of Mn ²⁺ in BiVO ₄ Single Crystals. Physica Status Solidi (B): Basic Research, 1996, 198, 839-851.	1.5	37
39	Modeling local distortions around ions doped into crystal using superposition model analysis of the zero-field splitting parameters. Solid State Communications, 2010, 150, 1077-1081.	1.9	37
40	Energy levels and crystal-field parameters for Pr3+ and Nd3+ ions in rare earth (RE) tellurium oxides RE2Te4O11 revisited – Ascent/descent in symmetry method applied for triclinic site symmetry. Optical Materials, 2011, 33, 1147-1161.	3.6	37
41	Cr3+ centres in LiNbO3: Experimental and theoretical investigation of spin hamiltonian parameters. Solid State Communications, 1993, 87, 245-249.	1.9	36
42	Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites. Journal of Computational Physics, 1993, 109, 150-152.	3.8	35
43	Reanalysis of energy levels and crystal field parameters for Er3+ and Tm3+ ions at C2 symmetry sites in hexahydrated trichloride crystals—Intricate aspects of multiple solutions for monoclinic symmetry. Physica B: Condensed Matter, 2010, 405, 1927-1940.	2.7	34
44	Modeling techniques for analysis and interpretation of electron magnetic resonance (EMR) data for transition ions at low symmetry sites in crystals—A primer for experimentalists. Physica B: Condensed Matter, 2009, 404, 3582-3593.	2.7	33
45	Forms of crystal field Hamiltonians – A critical review. Optical Materials, 2011, 33, 1557-1561.	3.6	32
46	Correlations between orthorhombic crystal field parameters for rare-earth (fn) and transition-metal (dn) ions in crystals: REBa2Cu3O7-x, RE2F14B, RE-garnets, RE:LaF3and MnF2. Molecular Physics, 1991, 74, 1159-1170.	1.7	31
47	Physics behind the magnetic hysteresis loop—a survey of misconceptions in magnetism literature. Journal of Magnetism and Magnetic Materials, 2003, 260, 250-260.	2.3	30
48	Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+–Ol2â^'defect center in KTaO3crystal. Journal of Physics Condensed Matter, 2009, 21, 455402.	1.8	30
49	EPR Study of Low Symmetry Mn ²⁺ Centers in LiNbO ₃ . Superposition Model and Crystal Field Analysis of the Zeroâ€Field Splitting Parameters. Physica Status Solidi (B): Basic Research, 1994, 185, 417-428.	1.5	28
50	Crystal-field analysis for RE3+ ions in laser materials: III. Energy levels for Nd3+ and Er3+ ions in LaAlO3, YAlO3, and LaGaO3 single crystals – Combined approach to low symmetry crystal field parameters. Chemical Physics, 2012, 400, 29-38.	1.9	28
51	New field-induced single ion magnets based on prolate Er(<scp>iii</scp>) and Yb(<scp>iii</scp>) ions: tuning the energy barrier <i>U</i> _{eff} by the choice of counterions within an N ₃ -tridentate Schiff-base scaffold. Inorganic Chemistry Frontiers, 2018, 5, 605-618.	6.0	27
52	Algebraic symmetry and determination of the "imaginary―crystal field parameters from optical spectra of fn-ions. Hexagonal and trigonal symmetry. Chemical Physics, 1986, 102, 437-443.	1.9	26
53	Reanalysis of crystal-field parameters forNd3+ions inNd2BaCuO5andNd2BaZnO5based on standardization, multiple correlated fitting technique, and dataset closeness. Physical Review B, 2007, 76, .	3.2	26
54	A lidar study of the atmospheric entrainment zone and mixed layer over Hong Kong. Atmospheric Research, 2004, 69, 147-163.	4.1	25

#	Article	IF	CITATIONS
55	Clarification of the confusion concerning the crystal-field quantities vs the zero-field splitting quantities in magnetism studies: Part Il—Survey of literature dealing with model studies of spin systems. Physica B: Condensed Matter, 2008, 403, 2312-2330.	2.7	25
56	Terminological confusions and problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians—Survey of the CF=ZFS confusion in recent literature. Physica B: Condensed Matter, 2014, 451, 134-150.	2.7	25
57	Analysis of the net charge-compensation contribution in the fine structure of EPR defect centers:Cr3+,Fe3+, andGd3+inA2MX4-,AMX3-, andMX2-type crystals. Physical Review B, 1988, 37, 27-34.	3.2	24
58	Spin Hamiltonian and structural disorder analysis for two high temperature Cr3+ defect centers in α-LilO3 crystals—low symmetry effects. Journal of Physics and Chemistry of Solids, 2003, 64, 887-896.	4.0	24
59	Clarification of the confusion concerning the crystal-field quantities vs. the zero-field splitting quantities in magnetism studies: Part l—Survey of literature dealing with specific compounds. Physica B: Condensed Matter, 2008, 403, 1882-1897.	2.7	24
60	Analysis of low symmetry aspects revealed by the zero-field splitting parameters and the crystal field parameters for Cr3+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal. Optical Materials, 2014, 36, 1342-1349.	3.6	24
61	Low symmetry aspects inherent in electron magnetic resonance (EMR) data for transition ions at triclinic and monoclinic symmetry sites: EMR of Fe3+ and Gd3+ in monoclinic zirconia revisited. Physica B: Condensed Matter, 2008, 403, 2349-2366.	2.7	23
62	Crystal-field analysis for RE3+ ions in laser materials: I. Absorption spectra and energy levels calculations for Nd3+ and Pr3+ ions in ABCO4 crystals. Chemical Physics, 2011, 383, 68-82.	1.9	23
63	Crystal field levels and zero-field splitting parameters of Cr2+ in the mixed system Rb2MnxCr1â^'xCl4. Physica B: Condensed Matter, 1993, 191, 323-333.	2.7	22
64	Comparative analysis of the microscopic spin-Hamiltonian expressions used for the non-Kramers Fe2+(3d6) ions with spin S=2 in reduced rubredoxin, desulforedoxin, and related systems. Physica B: Condensed Matter, 2003, 337, 204-220.	2.7	22
65	Alternative crystal field parameters for rare-earth ions obtained from various techniques. Journal of Alloys and Compounds, 2009, 467, 98-105.	5.5	22
66	The calculation of zero-field splitting parameters for Fe3+ ions doped in rutile TiO2 crystal by superposition model analysis. Chemical Physics, 2012, 402, 83-90.	1.9	22
67	Energy levels and crystal field parameters for Nd3+ ions in BaY2F8, LiKYF5, and K2YF5 single crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 87, 46-60.	3.9	22
68	Zeeman and zero-field splitting of 3d4 and 3d6 ions with orbital singlet ground state at orthorhombic and tetragonal symmetry sites. Journal of Physics and Chemistry of Solids, 1994, 55, 745-757.	4.0	20
69	Computer package for microscopic spin Hamiltonian analysis of the 3d4 and 3d6 (spin S = 2) ions at orthorhombic and tetragonal symmetry sites. Computers & Chemistry, 1997, 21, 45-50.	1.2	20
70	Monoclinic and orthorhombic standardization of spin-Hamiltonian parameters for rare-earth centers in various crystals. Physica B: Condensed Matter, 2000, 279, 302-318.	2.7	20
71	Trends in the crystal (ligand) field parameters and the associated conserved quantities for trivalent rare-earth ions at S4 symmetry sites in LiYF4. Journal of Alloys and Compounds, 2004, 385, 238-251.	5.5	20
72	Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2crystals: I. Tm3+in KGd(WO4)2and KLu(WO4)2, and Ho3+and Er3+ions in KGd(WO4)2. Journal of Physics Condensed Matter, 2010, 22, 045501.	1.8	20

#	Article	IF	CITATIONS
73	Revealing the consequences and errors of substance arising from the inverse confusion between the crystal (ligand) field quantities and the zero-field splitting ones. Physica B: Condensed Matter, 2015, 456, 330-338.	2.7	20
74	On the EPR of 3d4 and 3d6 ions at high magnetic fields. Physica B: Condensed Matter, 1989, 155, 336-339.	2.7	19
75	Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: I. Kyanite. Physics and Chemistry of Minerals, 1994, 21, 526.	0.8	19
76	Characteristics of the Magnetically Ordered High-SpinS=2 Fe2+Ion Systems Potentially Suitable for High-Magnetic-Field and High-Frequency EMR Studies. Journal of the Physical Society of Japan, 2003, 72, 61-83.	1.6	19
77	Crystal-field energy level analysis for Nd3+ions at the low symmetry C1site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals. Journal of Physics Condensed Matter, 2008, 20, 385205.	1.8	19
78	Lowâ€ŧemperature magnetism of some alkali metal uranates(V) and alkaline earth neptunates(IV). Examples for ferrimagnetism in mixed actinide oxides. Journal of Chemical Physics, 1983, 78, 5764-5771.	3.0	18
79	Relations between arbitrary symmetry spin-hamiltonian parameters Bkq and bkq in Various Axis Systems. Journal of Magnetic Resonance, 1985, 63, 95-106.	0.5	18
80	Net charge compensation contribution in the fine structure of EPR defect centres. Application to M3+ â~' VM (cation vacancy) and M3+ â~' X+ (M = Cr, Fe, Gd; X = Li, Na) centres in A2MF4 and A2MCl4. Solid State Communications, 1988, 65, 631-635.	1.9	18
81	Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: II. Andalusite and sillimanite. Physics and Chemistry of Minerals, 1994, 21, 532.	0.8	18
82	On the non-standard rhombic spin Hamiltonian parameters derived from M¶ssbauer spectroscopy and magnetism-related measurements. Journal of Magnetism and Magnetic Materials, 2001, 231, 146-156.	2.3	18
83	Crystal-field analysis for RE3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd3+ ions doped into SrLaGa3O7 and BaLaGa3O7 crystals and Tm3+ ions in SrGdGa3O7. Chemical Physics, 2011, 387, 69-78.	1.9	18
84	Model calculation of the spectroscopic properties for Cr 3+ in kyanite. Journal of Luminescence, 1994, 60-61, 108-111.	3.1	16
85	Crystal field parameters for Yb3+ ions at orthorhombic centers in garnets—Revisited. Journal of Luminescence, 2011, 131, 2690-2696.	3.1	16
86	Correlation of EMR and optical spectroscopy data for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal – Extracting low symmetry aspects. Optical Materials, 2015, 46, 254-259.	3.6	16
87	Spectroscopic and magnetic studies of erbium(III)-TEMPO complex as a potential single-molecule magnet: Interplay of the crystal-field and exchange coupling effects. Chemical Physics Letters, 2016, 662, 163-168.	2.6	16
88	Origin of the Ground Kramers Doublets for Co2+(3d7) Ions with the Effective Spin 3/2 Versus the Fictitious â€~Spin' ½. Applied Magnetic Resonance, 2019, 50, 797-808.	1.2	16
89	Effects of a nontrigonal crystal field on spectroscopic properties ofFe2+ions in yttrium iron garnet: Si(Ge). Physical Review B, 1980, 21, 4967-4975.	3.2	15
90	Low symmetry aspects in spectroscopic and magnetic susceptibility studies of Tb3+(4f8) in TbAlO3. Journal of Rare Earths, 2009, 27, 627-632.	4.8	15

#	Article	IF	CITATIONS
91	Optical Spectra and Energy Levels Analysis of the 4f ^{<i>N</i>} Ions Doped into Ba ₂ YCl ₇ . Journal of Physical Chemistry A, 2012, 116, 10574-10588.	2.5	15
92	The High-Resolution 4f–5d Absorption Spectrum of Divalent Dysprosium (Dy ²⁺) in Strontium Chloride Host SrCl ₂ : Fine Structure and Zero-Phonon Transitions Revealed. Journal of Physical Chemistry A, 2018, 122, 923-928.	2.5	15
93	Superposition model in electron magnetic resonance spectroscopy – a primer for experimentalists with illustrative applications and literature database. Applied Spectroscopy Reviews, 2019, 54, 673-718.	6.7	15
94	Crystal field and superposition model analysis for high-spin Fe2+and Fe4+ions in YBa2(Cu1-xFex)3O7- delta. Superconductor Science and Technology, 1991, 4, 535-543.	3.5	14
95	Crystal field and EPR analysis for 5D (3d4 and 3d6) ions at tetragonal sites: Applications to Fe2+ ions in minerals and Cr2+ impurities in semiconductors. Journal of Physics and Chemistry of Solids, 1996, 57, 1191-1199.	4.0	14
96	Electron magnetic resonance studies ofFe3+ions inBaTiO3: Implications of the misinterpretation of zero-field splitting terms and comparative data analysis. Physical Review B, 2006, 74, .	3.2	14
97	Modeling Spectroscopic Properties of Ni2+ Ions in the Haldane Gap System Y2BaNiO5. Applied Magnetic Resonance, 2013, 44, 899-915.	1.2	14
98	Textbook treatments of the hysteresis loop for ferromagnets—Survey of misconceptions and misinterpretations. American Journal of Physics, 2003, 71, 1080-1083.	0.7	13
99	Temperature dependence of the EPR lines in weakly doped LiNbO3:Yb—possible evidence of Yb3+ ion pairs formation. Physica B: Condensed Matter, 2008, 403, 207-218.	2.7	13
100	Alternative crystal-field parameters for rare-earth ions obtained from various techniques: II. Reanalysis of spectroscopic data for Eu3+ and Er3+ ions in RE2BaXO5 (X=Co, Cu, Ni, Zn) high temperature superconductors and related systems. Journal of Alloys and Compounds, 2009, 467, 106-111.	5.5	13
101	Determination of Crystal-Field Energy Levels and Temperature Dependence of Magnetic Susceptibility for Dy ³⁺ in [Dy ₂ Pd] Heterometallic Complex. Inorganic Chemistry, 2013, 52, 13199-13206.	4.0	13
102	Magnetostructural correlations for Fe 2+ ions at orthorhombic sites in FeCl 2 ·4H 2 O and FeF 2 ·4H 2 O crystals modeled by microscopic spin Hamiltonian approach. Journal of Magnetism and Magnetic Materials, 2016, 401, 1068-1077.	2.3	13
103	Computation of spin Hamiltonian parameters for 3 dnions at arbitrary symmetry within the lowest LS term approximation. Journal of Physics C: Solid State Physics, 1981, 14, 923-933.	1.5	12
104	Further EPR study of paramagnetic Cr3+ centers in KTiOPO4. Applied Magnetic Resonance, 1997, 12, 351-361.	1.2	12
105	Crystal field analysis within the approximation for 3d4 and 3d6 ions at sites with an axial type II symmetry. Journal of Physics and Chemistry of Solids, 1999, 60, 17-27.	4.0	12
106	Reanalysis of crystal field parameter datasets for rare-earth ions at low symmetry sites: Nd3+ in NdGaO3 and Pr3+ in PrGaO3. Journal of Alloys and Compounds, 2005, 389, 256-264.	5.5	12
107	Comprehensive analysis of crystal field parameter datasets for transition ions at low symmetry sites and extracting structural information—Application to Pr4+ in BaPrO3. Journal of Alloys and Compounds, 2008, 456, 16-26.	5.5	12
108	Truncated forms of the second-rank orthorhombic Hamiltonians used in magnetism and electron magnetic resonance (EMR) studies are invalid—Why it went unnoticed for so long?. Journal of Magnetism and Magnetic Materials, 2009, 321, 2946-2955.	2.3	12

#	Article	IF	CITATIONS
109	Single magnetic 3dN adatoms on surfaces – Proper outlook on compatibility of orthorhombic zero-field splitting parameters and their relationships with magnetic anisotropy quantities. Polyhedron, 2017, 127, 126-134.	2.2	12
110	Extension of Highâ€Resolution Optical Absorption Spectroscopy to Divalent Neodymium: Absorption Spectra of Nd ²⁺ Ions in a SrCl ₂ Host. Angewandte Chemie - International Edition, 2017, 56, 10721-10724.	13.8	12
111	Electron magnetic resonance data on high-spin Mn(III; S = 2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach. Journal of Inorganic Biochemistry, 2017, 175, 36-46.	3.5	12
112	Crystal field levels and fine structure of the ground orbital state for high spin Fe2+ and Fe4+ ions in YBa2(Cu1â^'xFex)307â^'δ. Journal of Physics and Chemistry of Solids, 1993, 54, 733-744.	4.0	11
113	Comparative analysis and identification of low-symmetry paramagnetic centers: Cr3+ in KTiOPO4. Applied Magnetic Resonance, 1999, 16, 457-472.	1.2	11
114	Temperature dependence of local structural changes around transition metal centers Cr3+ and Mn2+ in RAl3(BO3)4 crystals studied by EMR. Optical Materials, 2017, 73, 124-131.	3.6	11
115	Crystal-field energy levels for deep Fe centers at orthorhombic and higher symmetry sites in BaTiO_3. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 544.	2.1	10
116	EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals. Applied Magnetic Resonance, 2009, 36, 371-380.	1.2	10
117	Alternative crystal-field parameters for rare-earth ions obtained from various techniques: III. Low symmetry aspects inherent in monoclinic parameters obtained by Mössbauer spectroscopy for Tm3+ ions in Tm2BaXO5 (X=Co, Cu, Ni). Journal of Alloys and Compounds, 2010, 497, 32-37.	5.5	10
118	Systematization of crystal field parameters for trivalent rare-earth (RE3+) ions at orthorhombic sites in selected laser materials—standardization approach. Journal of Physics and Chemistry of Solids, 2013, 74, 751-758.	4.0	10
119	Effect of small in-plane anisotropy in the large-D phase systems based on Ni2+ (S=1) ions in Heisenberg antiferromagnetic chains. Physica B: Condensed Matter, 2014, 436, 193-199.	2.7	10
120	Spectroscopic determination of site symmetry and space group in lanthanide-doped crystals: Resolving intricate symmetry aspects for β-NaLnF 4. Polyhedron, 2016, 105, 42-48.	2.2	10
121	Crossing of low-lying electronic levels of high-spin ferrous ion in deoxyhemoglobin and deoxymyoglobin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1977, 490, 301-310.	1.7	9
122	EPR study of Mn2+in ferroelastic BiVO4single crystal: Monoclinic spin hamiltonian parameters and their temperature dependence. Ferroelectrics, 1994, 156, 249-254.	0.6	9
123	Magnetic interactions in frustrated Mn3Fe4(VO4)6. Journal of Non-Crystalline Solids, 2009, 355, 1419-1426.	3.1	9
124	Spin-Hamiltonian analysis for high-spinFe2+andFe4+ions at orthorhombic sites inYBa2(Cu1â^'xFex)3O7â^'δand related oxides. Physical Review B, 1993, 47, 9001-9009.	3.2	8
125	COMPARE: A computer program for comparative analysis of EPR data for low-symmetry paramagnetic centers. Applied Magnetic Resonance, 1999, 16, 447-456.	1.2	8
126	Multifrequency EPR study of Cr3+ions in LiScGeO4. Journal of Physics Condensed Matter, 2000, 12, 4465-4473.	1.8	8

#	Article	IF	CITATIONS
127	Low-Symmetry Spin Hamiltonian and Crystal Field Tensors Analysis: Fe3+ in Natrolite. Journal of Magnetic Resonance, 2002, 155, 57-63.	2.1	8
128	Magnetization and High-Frequency EMR Measurements on the Lithium-Ion Battery Substance LiMn2O4. Japanese Journal of Applied Physics, 2005, 44, 7440-7444.	1.5	8
129	Theoretical interpretation of the zero-field splitting parameters for Fe3+ ions in wide-band gap semiconductor TlGaSe2 single crystal. Solid State Communications, 2010, 150, 1610-1613.	1.9	8
130	Alternative crystal field parameters for rare-earth ions obtained from various techniques: IV. Comparative analysis of crystal field parameters obtained from inelastic neutron scattering and related studies of RE ions (RE=Er3+, Ho3+, Nd3+, Pr3+) in REBa2Cu3O7â^î^ high-Tc superconductors. Journal of Alloys and Compounds, 2012, 540, 279-289.	5.5	8
131	Modelling spectroscopic properties of NiSnCl6·6H2O as a probe for pressure calibration in high-magnetic field and high-frequency EMR measurements. Polyhedron, 2015, 102, 261-266.	2.2	8
132	Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism. Physical Review B, 2016, 93, .	3.2	8
133	Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts and supported by first calculations of the Nd2+ electronic structure: I. SrCl2:Ln2+. Journal of Luminescence, 2018, 199, 116-125.	3.1	8
134	Analysis of crystal-field effect on luminescence spectra of Mn ⁴⁺ (3d ³) ion-doped double perovskite La ₂ ZnTiO ₆ phosphor by semiempirical computations: exchange charge model and superposition model. Journal of Materials Chemistry C, 2022, 10, 4355-4364.	5.5	8
135	On the possible presence of odd-order terms in a magnetic resonance spin Hamiltonian for S-state ions. Journal of Physics C: Solid State Physics, 1987, 20, L77-L81.	1.5	7
136	Reduction tables for tensorial products of irreducible tensor operators O(k)(J) used in spectroscopy. Journal of Physics Condensed Matter, 1991, 3, 8225-8235.	1.8	7
137	Eu3+ Ion Luminescence Crystal Structure Determination for Lanthanide Sesquioxides. Applied Spectroscopy, 1993, 47, 127-128.	2.2	7
138	High field magnetic anisotropy study of Fe2+ ions in Il–VI semimagnetic semiconductors. Journal of Magnetism and Magnetic Materials, 1996, 163, 80-86.	2.3	7
139	Peculiarity of the EPR spectra of impurity Gd ions in lead telluride single crystals. Physica B: Condensed Matter, 2002, 322, 270-275.	2.7	7
140	Standardization of crystal field parameters for rare-earth (RE3+) ions at monoclinic sites in selected laser crystals. Journal of Alloys and Compounds, 2016, 666, 468-475.	5.5	7
141	Current status of the proposals for unification of notations and guidelines for data presentation in the EMR Area: Blueprint for future actions. Applied Magnetic Resonance, 2003, 24, 483-491.	1.2	6
142	Electron paramagnetic resonance studies of cobalt and rare-earth impurity ions in YAlO3. Journal of Physics Condensed Matter, 2006, 18, 4751-4761.	1.8	6
143	Thermally Induced Changes in the Structure, Composition, and Chemical Properties of LiMn2O4 ±xSpinel Prepared by Sol–Gel Method. Japanese Journal of Applied Physics, 2006, 45, 5132-5137.	1.5	6
144	Spectroscopic properties of Fe2+ ions at tetragonal sites—Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4. Journal of Magnetism and Magnetic Materials, 2011, 323, 2681-2689.	2.3	6

#	Article	IF	CITATIONS
145	Electron paramagnetic resonance (EPR) investigations of the local environment around Co2+ ions doped in PbMoO4 single crystals – Correlation with optical studies. Optical Materials, 2013, 35, 2296-2302.	3.6	6
146	Implications of Invalid Conversions between Crystal-Field Parameters and Zero-Field Splitting Ones Used in Superposition Model. Acta Physica Polonica A, 2014, 125, 1215-1219.	0.5	6
147	Software package SIMPRE-Revisited. Journal of Computational Chemistry, 2014, 35, 1935-1941.	3.3	6
148	Tools for magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites: Comparative study with applications to Ni2+ ions in Y2BaNiO5 and Nd2BaNiO5. Journal of Magnetism and Magnetic Materials, 2015, 374, 484-494.	2.3	6
149	Optical Absorption Spectra of Divalent Neodymium (Nd2+) in Bromide and Iodide Hosts. European Journal of Inorganic Chemistry, 2018, 2018, 1660-1669.	2.0	6
150	Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts: II. CaCl2:Ln2+ (Ln = Sm, Eu, Tm, and Yb). Journal of Luminescence, 2018, 197, 66-75.	3.1	6
151	Spectroscopic and magnetic properties of Fe2+ (3d6; S= 2) ions in Fe(NH4)2(SO4)2·6H2O – Modeling zero-field splitting and Zeeman electronic parameters by microscopic spin Hamiltonian approach. Journal of Magnetism and Magnetic Materials, 2018, 449, 94-104.	2.3	6
152	EPR study of Gd3+ in a ferroelastic BiVO4 single crystal. Applied Magnetic Resonance, 1999, 16, 23-32.	1.2	5
153	Reinterpretation of crystal field parameters for rare-earth nickelates RNiO3 (R=Pr, Nd, Sm, Eu, and) Tj ETQq1 1 0	.784314 rg 2.7	gBŢ/Overlock
154	Submillimetre and millimetre wave ESR study of manganese spinel compound LiMn2O4. Journal of Physics Condensed Matter, 2007, 19, 145266.	1.8	5
155	Crystal-field analysis of Ho3+ ions in HoCl3·6H2O. Journal of Alloys and Compounds, 2008, 451, 111-115.	5.5	5
156	Low symmetry aspects inherent in EMR studies of the orthorhombic to monoclinic structural phase transition in the hexagonal form of barium titanate BaTiO3doped by Fe3+ions. Journal of Physics Condensed Matter, 2008, 20, 295219.	1.8	5
157	Interpretation of multiple solutions and selection of the final crystal field parameter sets for orthorhombic and lower symmetry—Case study: Er3+ ions at orthorhombic sites in ErNiAl4. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 60-68.	3.9	5
158	Truncated forms of zero-field splitting (ZFS) Hamiltonians and implications for interpretation of ZFS parameters for Fe2+() ions in. Solid State Communications, 2011, 151, 855-858.	1.9	5
159	Determination of superposition model parameters required for analysis of the zero-field splitting parameters for Ni2+ ions in NiO6 complexes. Journal of Magnetism and Magnetic Materials, 2015, 381, 99-104.	2.3	5
160	Comment on the Crystalâ€Field Analysis Underlying "Breakdown of Crystallographic Site Symmetry in Lanthanideâ€Doped NaYF ₄ Crystals― Angewandte Chemie - International Edition, 2015, 54, 1074-1076.	13.8	5
161	Application of orthorhombic standardization in magnetic susceptibility studies of localized spin models with S=1, 3/2, 2, 5/2. Physica B: Condensed Matter, 2016, 497, 14-18.	2.7	5
162	Superposition model analysis of nickel(II) ions in trigonal bipyramidal complexes exhibiting huge zero field splitting (aka â€~giant magnetic anisotropy'). Journal of Magnetism and Magnetic Materials, 2017, 434, 56-61.	2.3	5

#	Article	IF	CITATIONS
163	High-frequency EMR data for Fe2+ (SÂ=Â2) ions in natural and synthetic forsterite revisited – Fictitious spin S′Â=Â1 versus effective spin SËœÂ=Â2 approach. Journal of Alloys and Compounds, 2017, 726, 1226-123	5 ^{.55}	5
164	Modeling the zero-field splitting parameters and local structure of Co2+ ions doped into PbMoO4 crystal based on crystal field approach and superposition model analysis. Optical Materials, 2018, 84, 466-474.	3.6	5
165	Determination of the <i>g</i> -factors measured by EPR based on theoretical crystal field and superposition model analyses for lanthanide-based magnetically concentrated crystals – case study: double tungstates and molybdates. Philosophical Magazine, 2019, 99, 224-246.	1.6	5
166	EMR Data on Mn(III; S=2) Ions in MnTPPCI Complex Modelled by Microscopic Spin Hamiltonian Approach. Acta Physica Polonica A, 2017, 132, 15-19.	0.5	5
167	A method for determination of higher-order magnetic anisotropy constants — Importance of the cubic K3 and K4 for certain energy levels models. Journal of Magnetism and Magnetic Materials, 1983, 30, 285-294.	2.3	4
168	Pecularities of EPR spectra of the Gd impurity in the Sn-Rich Pb1â^'x Sn x Te(Gd) solid solutions. Applied Magnetic Resonance, 2003, 24, 369-377.	1.2	4
169	Electron paramagnetic resonance study of Fe3+ ions at octahedral and tetrahedral mirror symmetry sites in the LiScGeO4 crystal. Applied Magnetic Resonance, 2004, 26, 533-542.	1.2	4
170	Extracting structural information from low symmetry crystal field parameters-case study: Er3+ and Nd3+ ions in YAlO3. Journal of Rare Earths, 2009, 27, 619-623.	4.8	4
171	Properties of uranium- and lanthanide-based single-ion magnets modelled by the complete and restricted Hamiltonian approach. Polyhedron, 2015, 93, 91-98.	2.2	4
172	Magnetostructural relationships for Ni(II) ions at octahedral sites in [Ni Zn1â^'(C2O4)(dmiz)2]: Computational study of zero-field splitting and using superposition model. Polyhedron, 2015, 100, 282-289.	2.2	4
173	Temperature and pressure dependence of local structural changes around Gd 3+ centers in RAl 3 (BO 3) Tj ETQq1	1,0,7843 2,2	14 rgBT /Ov
174	Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts: III. CsSrBr3:Ln2+ (Ln = Nd, Sm, Eu, Tm, and Yb). Journal of Luminescence, 2019, 215, 116622.	3.1	4
175	Modeling Spin Hamiltonian Parameters for Fe2+ (S = 2) Adatoms on Cu2N/Cu(100) Surface Using Semiempirical and Density Functional Theory Approaches. Applied Magnetic Resonance, 2019, 50, 769-783.	1.2	4
176	Magnetocrystalline Anisotropy of 3d6 and 3d4 Ions at Triclinic. Symmetry Sites Application to Fe2+ Ions in YIG: Me4+ (Me = Si, Ge). Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1983, 38, 540-554.	1.5	3
177	Electron magnetic resonance (EMR) of the spin S≥1 systems: an overview of major intricacies awaiting unwary spectroscopists. , 2002, , 3-14.		3
178	Noether's theorem and low symmetry aspects concerning the crystal (ligand) field Hamiltonians and spin Hamiltonians. Journal of Physics: Conference Series, 2006, 30, 266-277.	0.4	3
179	Electron paramagnetic resonance and optical study of VO ²⁺ -doped zinc ammonium phosphate hexahydrate single crystals. Physica Scripta, 2012, 86, 045602.	2.5	3
180	Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2crystals: II. Pr3+and Nd3+ions in KRE(WO4)2(RE = Y or Gd), Pr3+ions in M+Bi(XO4)2(M+= Li or) Tj ETQ)q0,0 0 rgl 1.8	BJ /Overlock

Matter, 2014, 26, 065501.

#	Article	IF	CITATIONS
181	Modeling spin Hamiltonian parameters for Fe2+ adatoms on Cu2N/Cu(1 0 0) surface: Semiempirical microscopic spin Hamiltonian approach. Journal of Magnetism and Magnetic Materials, 2019, 485, 381-390.	2.3	3
182	Spectroscopic Study of Mn2+ Doped PbS Nanocrystals. Applied Magnetic Resonance, 2019, 50, 785-795.	1.2	3
183	Can the correspondence principle lead to improper relations between the uniaxial magnetic anisotropy constant K and the axial zero-field splitting parameter D for adatoms on surfaces?. Journal of Magnetism and Magnetic Materials, 2019, 471, 89-96.	2.3	3
184	Implications of direct conversions of crystal field parameters into zero-field splitting ones - Case study: Superposition model analysis for Cr3+ ions at orthorhombic sites in LiKSO4. Journal of Luminescence, 2021, 230, 117548.	3.1	3
185	Conversions of the Second-Rank Zero Field Splitting Parameters Measured Assuming the Fictitious Spin S'=1 to those for the Effective Spin S f =2. Acta Physica Polonica A, 2017, 132, 11-14.	0.5	3
186	Magnetocrystalline anisotropy of Fe2+ion in silicon―or germaniumâ€substituted yttrium iron garnet at zero temperature. Journal of Applied Physics, 1982, 53, 593-595.	2.5	2
187	Comment on energy of magnetic anisotropy. Physica Status Solidi (B): Basic Research, 1982, 114, K79.	1.5	2
188	On the Mechanism of Spin Reorientation in YIG:Si. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1984, 39, 605-614.	1.5	2
189	Clarification of terminological confusion concerning the crystal field quantities vs. the effective spin Hamiltonian and zero-field splitting quantities in the papers by Bayrakçeken et al. [Spectrochim. Acta Part A 66 (2007) 462 and 1291]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2008 71 1623-1626	3.9	2
190	Extension of Highâ€Resolution Optical Absorption Spectroscopy to Divalent Neodymium: Absorption Spectra of Nd ²⁺ lons in a SrCl ₂ Host. Angewandte Chemie, 2017, 129, 10861-10864.	2.0	2
191	Importance of the fourth-rank zero field splitting parameters for Fe ²⁺ (<i>S</i> = 2) adatoms on the CuN/Cu(100) surface evidenced by their determination based on DFT and experimental data. Physical Chemistry Chemical Physics, 2020, 22, 19837-19844.	2.8	2
192	Selection rules in electron magnetic resonance (EMR) spectroscopy and related techniques: Fundamentals and applications to modern case systems. Physica B: Condensed Matter, 2021, 608, 412863.	2.7	2
193	Spin Hamiltonian Parameters for Co2+ Ions in PbMoO4 Crystal - Interplay between the Fictitious Spin S'=1/2 and the Effective Spin SI f =3/2. Acta Physica Polonica A, 2017, 132, 73-76.	0.5	2
194	EPR and NMR in powders of doped and undoped IV–VI crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1247-1256.	3.9	1
195	High field ESR measurements on the lithium-ion battery substance LiMn2O4. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2820-2823.	0.8	1
196	Analysis of the temperature dependence of the high-frequency EMR spectra of Mn ions in the lithium-ion battery material LiMn2O4. Research on Chemical Intermediates, 2007, 33, 853-862.	2.7	1
197	Trends in orthorhombic crystal field parameters for trivalent rare-earth ions in high-Tc superconductors REBa2Cu3O7â~δ– Correct interpretation based on standardization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 103, 282-286.	3.9	1
198	EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians. Nukleonika, 2015, 60, 377-383.	0.8	1

#	Article	IF	CITATIONS
199	Method for determination of the fourth-rank zero field splitting parameters from the zero field energy levels for spin $\hat{S}_{\hat{f}} = \hat{a} = \hat{c}^2$ systems $\hat{a} \in \hat{c}$ Case studies: Fe2+ ions in [Fe(H2O)6](NH4)2(SO4)2 and forsterite (Fe2+:Mg2SiO4), and Cr2+ ions in (ND4)2Cr(D2O)6(SO4)2 and Rb2Cr(D2O)6(SO4)2. Journal of Magnetism and Magnetic Materials, 2020, 493, 165670.	² 2.3	1
200	Comparative Analysis of Experimental and Theoretical Zero-Field Splitting and Zeeman Electronic Parameters for Fe2+ lons in FeX2·4H2O (X = F, Cl, Br, I) and [Fe(H2O)6](NH4)2(SO4)2. Acta Physica Polonica A, 2017, 132, 19-23.	0.5	1
201	Note on the "Comment on Energy of Magnetic Anisotropy― Physica Status Solidi (B): Basic Research, 1983, 120, K51.	1.5	0
202	On the exchange-corrected susceptibility for two-sublattice ferrimagnetic systems in the paramagnetic range. Journal of Magnetism and Magnetic Materials, 1983, 39, L317-L319.	2.3	0
203	Extracting structural information from low symmetry crystal field parameters: Pr4+ in BaPrO3. Journal of Alloys and Compounds, 2008, 451, 694-696.	5.5	0
204	Modern Trends in the Development of EPR/ESR. Applied Magnetic Resonance, 2015, 46, 965-966.	1.2	0