
Paola Bernardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358022/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013, 339, 303-307.	12.6	884
2	Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers. Advanced Materials, 2014, 26, 3526-3531.	21.0	347
3	Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 2013, 427, 48-62.	8.2	312
4	A Spirobifluoreneâ€Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Advanced Materials, 2012, 24, 5930-5933.	21.0	306
5	Nanoporous Organic Polymer/Cage Composite Membranes. Angewandte Chemie - International Edition, 2013, 52, 1253-1256.	13.8	263
6	Polymer ultrapermeability from the inefficient packing of 2D chains. Nature Materials, 2017, 16, 932-937.	27.5	261
7	Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. Macromolecules, 2011, 44, 6471-6479.	4.8	233
8	Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Separation and Purification Technology, 2012, 97, 73-82.	7.9	223
9	Enhancement of CO ₂ Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. Macromolecules, 2014, 47, 1021-1029.	4.8	204
10	A highly permeable polyimide with enhanced selectivity for membrane gas separations. Journal of Materials Chemistry A, 2014, 2, 4874-4877.	10.3	159
11	Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Letters, 2015, 4, 912-915.	4.8	159
12	Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polymer Chemistry, 2013, 4, 3813.	3.9	141
13	High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. Journal of Membrane Science, 2012, 415-416, 801-809.	8.2	127
14	Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration membranes. Journal of Membrane Science, 2011, 384, 89-96.	8.2	119
15	Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. Macromolecules, 2014, 47, 5595-5606.	4.8	118
16	Enhancing the Gas Permeability of Tröger's Base Derived Polyimides of Intrinsic Microporosity. Macromolecules, 2016, 49, 4147-4154.	4.8	115
17	Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tr¶ger〙s Base Units. Macromolecules, 2014, 47, 7900-7916.	4.8	104
18	Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes. Journal of Membrane Science, 2013, 447, 107-118.	8.2	86

PAOLA BERNARDO

#	Article	IF	CITATIONS
19	Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. Macromolecules, 2014, 47, 8320-8327.	4.8	82
20	Synthesis of cardo-polymers using Tröger's base formation. Polymer Chemistry, 2014, 5, 5255.	3.9	63
21	Engineering Evaluations of a Catalytic Membrane Reactor for the Water Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2005, 44, 7676-7683.	3.7	53
22	Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2019, 212, 545-554.	7.9	53
23	The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150031.	3.4	51
24	Pebax®/PAN hollow fiber membranes for CO2/CH4 separation. Chemical Engineering and Processing: Process Intensification, 2015, 94, 53-61.	3.6	49
25	Temperature and pressure dependence of gas permeation in amine-modified PIM-1. Journal of Membrane Science, 2018, 555, 483-496.	8.2	45
26	Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids. Separation and Purification Technology, 2013, 109, 87-97.	7.9	40
27	Active packaging for table grapes: Evaluation of antimicrobial performances of packaging for shelf life of the grapes under thermal stress. Food Packaging and Shelf Life, 2020, 25, 100545.	7.5	30
28	Influence of the Preparation Method and Photo-Oxidation Treatment on the Thermal and Gas Transport Properties of Dense Films Based on a Poly(ether-block-amide) Copolymer. Materials, 2018, 11, 1326.	2.9	28
29	Enhancing Gas Permeation Properties of Pebax® 1657 Membranes via Polysorbate Nonionic Surfactants Doping. Polymers, 2020, 12, 253.	4.5	28
30	Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger's base: A combined experimental and computational investigation of the role of residual casting solvent. Journal of Membrane Science, 2019, 569, 17-31.	8.2	25
31	Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation. Membranes, 2014, 4, 20-39.	3.0	23
32	Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger's-Base Derived Polymers of Intrinsic Microporosity. Membranes, 2020, 10, 62.	3.0	21
33	Triggering the gas transport in PVdF-HFP membranes via imidazolium ionic liquids. Separation and Purification Technology, 2020, 250, 117201.	7.9	17
34	A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation. Polymers, 2022, 14, 10.	4.5	17
35	Multilayer composite SBS membranes for pervaporation and gas separation. Separation and Purification Technology, 2011, 80, 635-642.	7.9	16
36	Integrated membrane operations in the ethylene oxide production. Clean Technologies and Environmental Policy, 2012, 14, 475-485.	4.1	10

Paola Bernardo

#	Article	IF	CITATIONS
37	Anomalous Phenomena Occurring during Permeation and Sorption of C1–C6 Alcohol Vapors in Teflon AF 2400. Industrial & Engineering Chemistry Research, 2013, 52, 10406-10417.	3.7	10
38	Solution Casting Blending: An Effective Way for Tailoring Gas Transport and Mechanical Properties of Poly(vinyl butyral) and Pebax2533. Journal of Physical Chemistry C, 2019, 123, 11264-11272.	3.1	10
39	Heterogenized Imidazolium-Based Ionic Liquids in Pebax®Rnew. Thermal, Gas Transport and Antimicrobial Properties. Polymers, 2020, 12, 1419.	4.5	9
40	Effect of Physical Aging on Gas Transport in Asymmetric Polyimide Hollow Fibers Prepared by Triple-Orifice Spinneret. Polymers, 2020, 12, 441.	4.5	9
41	Microscopic and macroscopic investigation on the gas diffusion in poly(ether-block-amide) membranes doped with polysorbate nonionic surfactants. Polymer, 2020, 209, 122949.	3.8	8
42	Effect of the Post-Spinning Solvent Exchange on the Performance of Asymmetric, Polyimide Hollow Fibers Prepared by Using a Triple-Orifice Spinneret. Materials, 2019, 12, 3632.	2.9	7
43	Catalytic zeolite membrane reactors for the selective CO oxidation. Desalination, 2006, 200, 702-704.	8.2	6
44	Ball Milling to Produce Composites Based of Natural Clinoptilolite as a Carrier of Salicylate in Bio-Based PA11. Polymers, 2019, 11, 634.	4.5	6
45	Effect of external fluid and inline crosslinking on the performance of polyimide hollow fibres prepared by using a triple–orifice spinneret. Journal of Membrane Science, 2019, 570-571, 410-417.	8.2	6
46	Hollow Fiber Polyimide Membranes Prepared in a Triple Orifice Spinneret: Effect of a Reduced Water Activity in the Bore Fluid on the Gas Separation Performance. Polymers, 2021, 13, 2211.	4.5	2
47	4.9 Membrane Technology in the Refinery and Petrochemical Field: Research Trends and Recent Progresses. , 2017, , 164-188.		1
48	Microporous Polymeric Membranes: Structure, Preparation, Characterization, and Applications. , 2019, , 225-258.		0
49	EVA Films Loaded with Layered Double Hydroxide (LDH) Modified with Methacrylic Anion: Effect of the Nanohybrid Filler on the Photodegradation Phenomena. Polymers, 2021, 13, 2525.	4.5	0

50 Gas Separation by Membrane Operations. , 2015, , 1-3.

0