J Cristobal Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357950/publications.pdf

Version: 2024-02-01

134 papers 3,101 citations

28 h-index 223531 46 g-index

175 all docs

175
docs citations

175 times ranked 1850 citing authors

#	Article	IF	Citations
1	Synthesis and Conformational and Biological Aspects of Carbasugarsâ€. Chemical Reviews, 2007, 107, 1919-2036.	23.0	312
2	Synthesis of a 28-mer oligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron: Asymmetry, 2006, 17, 2449-2463.	1.8	139
3	Recent Developments in the Ferrier Rearrangement. European Journal of Organic Chemistry, 2013, 2013, 7221-7262.	1.2	136
4	Ferrier Rearrangement under Nonacidic Conditions Based on Iodonium-Induced Rearrangements of Allylic n-Pentenyl Esters, n-Pentenyl Glycosides, and Phenyl Thioglycosides. Journal of Organic Chemistry, 1995, 60, 3851-3858.	1.7	85
5	Reciprocal Donor Acceptor Selectivity (RDAS) and Paulsen's Concept of "Match―in Saccharide Coupling. European Journal of Organic Chemistry, 2004, 2004, 1387-1395.	1.2	67
6	Armed–Disarmed Effects in Carbohydrate Chemistry: History, Synthetic and Mechanistic Studies. Topics in Current Chemistry, 2010, 301, 1-29.	4.0	54
7	Serial radical reactions of enol ethers: ready routes to highly functionalized C-glycosyl derivatives. Journal of the American Chemical Society, 1989, 111, 3450-3452.	6.6	51
8	Serial Radical Cyclization of Pyranose-Derived Dienes in the Stereocontrolled Synthesis of Woodward's Reserpine Precursor. Journal of Organic Chemistry, 1995, 60, 3859-3870.	1.7	47
9	Serial Radical Reactions of Glycals: Ready Routes to Highly Functionalized C-Glycosyl Derivatives. Journal of Organic Chemistry, 1995, 60, 3871-3878.	1.7	44
10	n-Pentenyl esters facilitate an oxidative alternative to the Ferrier rearrangement. An expeditious route to sucrose. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	43
11	Unexpected Role of O-2 "Protecting―Groups of Glycosyl Donors in Mediating Regioselective Glycosidation. Journal of the American Chemical Society, 2002, 124, 3198-3199.	6.6	43
12	n-Pentenyl esters versus n-pentenyl glycosides. Synthesis and reactivity in glycosidation reactions. Journal of the Chemical Society Chemical Communications, 1991, , 159.	2.0	42
13	Leads for Development of New Naphthalenesulfonate Derivatives with Enhanced Antiangiogenic Activity. Journal of Biological Chemistry, 2003, 278, 21774-21781.	1.6	42
14	Iterative, orthogonal strategy for oligosaccharide synthesis based on the regioselective glycosylation of polyol acceptors with partially unprotected n-pentenyl-orthoesters: further evidence for reciprocal donor acceptor selectivity (RDAS). Chemical Communications, 2005, , 5088.	2.2	40
15	Regio- and Stereocontrolled 6-Endo-TrigRadical Cyclization of Vinyl Radicals:Â A Novel Entry to Carbasugars from Carbohydrates. Journal of Organic Chemistry, 1998, 63, 9626-9627.	1.7	39
16	Synthesis of Carbasugars Based on Ring Closing Metathesis: 2000-2006. Mini-Reviews in Organic Chemistry, 2007, 4, 201-216.	0.6	38
17	Secondary Metabolites from Satureja Species. New Triterpenoid from Satureja acinos. Journal of Natural Products, 1985, 48, 128-131.	1.5	37
18	Relevance of the Glycosyl Donor to the Regioselectivity of Glycosidation of Primary-Secondary Diol Acceptors and Application of These Ideas to in Situ Three-Component Double Differential Glycosidation§. Organic Letters, 2005, 7, 4899-4902.	2.4	37

#	Article	IF	CITATIONS
19	Alkoxyl radicals in 1,5-hydrogen shifts for site-specific, stereocontrolled alkylation of carbohydrates. Journal of the American Chemical Society, 1989, 111, 6471-6473.	6.6	35
20	One pot/two donors/one diol give one differentiated trisaccharide: powerful evidence for reciprocal donor–acceptor selectivity (RDAS). Chemical Communications, 2002, , 2104-2105.	2.2	35
21	Metathesis Reactions of Carbohydrates: Recent Highlights in Crossâ€Metathesis. European Journal of Organic Chemistry, 2010, 2010, 6123-6143.	1.2	35
22	Reciprocal donor acceptor selectivity (RDAS): A new concept for "matching" donors with acceptors. Canadian Journal of Chemistry, 2002, 80, 1075-1087.	0.6	34
23	IPy2BF4-Mediated Transformation ofn-Pentenyl Glycosides to Glycosyl Fluorides:Â A New Pair of Semiorthogonal Glycosyl Donors. Organic Letters, 2007, 9, 2759-2762.	2.4	33
24	A novel strategy for regio- and stereo-control in glycosylation reactions: template-directed cyclo-glycosylation of monosaccharides. Journal of the Chemical Society Chemical Communications, 1995, , 2005-2006.	2.0	31
25	Template directed cyclo-glycosylation: Effect of the anchoring sites of the spacer and temperature in the regio- and stereo-selectivity of the glycosylation. Tetrahedron Letters, 1996, 37, 1105-1108.	0.7	31
26	Thioglycoside and trichloroacetimidate donors in regioselective glycosidations. Comparison with n-pentenyl glycosides. Tetrahedron Letters, 2003, 44, 1417-1420.	0.7	30
27	Serial Radical Cyclization of Pyranose-Derived Dienes in the Stereocontrolled Synthesis of Densely Functionalized Cyclohexanes. A Route to Woodward's Reserpine Precursor. Journal of Organic Chemistry, 1994, 59, 4048-4050.	1.7	29
28	Two terpenoids from salvia bicolor. Phytochemistry, 1985, 24, 111-113.	1.4	28
29	Stereoselective synthesis of substituted exo-glycals from 1-exo-methylene pyranoses. Tetrahedron Letters, 2003, 44, 6111-6116.	0.7	28
30	n-Pentenyl glycosides as mediators in the asymmetric synthesis of monosubstituted chiral nonracemic tetrahydrofurans and .gammalactones. Journal of Organic Chemistry, 1990, 55, 2997-2998.	1.7	25
31	Photochemically Induced Addition of 2-Propanol to Hex-2-enono-δ-lactones Followed by Radical Cyclization:  A Novel Entry to Branched Cyclohexanes and Cyclopentanes from Carbohydrates. Journal of Organic Chemistry, 1997, 62, 6612-6614.	1.7	25
32	Metathesis Reactions of Carbohydrates: Recent Highlights in Alkyne Metathesis. European Journal of Organic Chemistry, 2011, 2011, 1803-1825.	1.2	25
33	Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving Oneâ€Pot Assembly of "Clickable―BODIPY Dyes. European Journal of Organic Chemistry, 2014, 2014, 5659-5663.	1.2	25
34	Straightforward route to 2- and 3-formyl hex-1- and -2-enopyranosides and their highly stereoselective hetero Diels–Alder reaction with ethyl vinyl ether. Journal of the Chemical Society Chemical Communications, 1988, , 514-515.	2.0	24
35	Efficient routes to pyranosidic homologated conjugated enals and dienes from monosaccharides. Tetrahedron, 1993, 49, 7701-7722.	1.0	24
36	A general method for convergent synthesis of functionalized exo-glycals based on halogenation and Suzuki cross-coupling of 1-exo-methylene sugars. Chemical Communications, 2002, , 2024-2025.	2.2	24

#	Article	IF	CITATIONS
37	A general stereodivergent strategy for the preparation of carbasugars. Syntheses of 5a-carba-α-d-glucose, α-d-galactose, and β-l-gulose pentaacetates from d-mannose. Tetrahedron Letters, 2002, 43, 5559-5562.	0.7	24
38	A Stereodivergent Approach to 5a-Carba-α-D-gluco-, -α-D-galacto and -β-L-gulopyranose Pentaacetates fromD-Mannose, Based on 6-exo-dig Radical Cyclization and Bartonâ^'McCombie Radical Deoxygenation. European Journal of Organic Chemistry, 2004, 2004, 1830-1840.	1.2	24
39	One-Pot Synthesis of Rotationally Restricted, Conjugatable, BODIPY Derivatives from Phthalides. Journal of Organic Chemistry, 2017, 82, 1240-1247.	1.7	24
40	One-pot synthesis of 1-exo-alkylidene-2,3-anhydro furanoses: convenient precursors for exo-glycals and functionalized C-glycals. Chemical Communications, 2002, , 2022-2023.	2.2	23
41	Six- versus five-membered ring formation in radical cyclization of 1-vinyl-5-methyl-5-hexenyl radicals. Tetrahedron Letters, 2002, 43, 4997-5000.	0.7	23
42	Unsaturated Sugars: A Rich Platform for Methodological and Synthetic Studies. Current Organic Chemistry, 2009, 13, 532-553.	0.9	23
43	A Simple Entry to Pyranoid Glycals: Reaction of Anomeric Glycosyl Sulfoxides with Organolithiums. Synlett, 1996, 1996, 628-630.	1.0	22
44	Unexpected Remarkable Stability of Primary Ozonides Derived from Alkenyl Stannanes. One-Pot Synthesis of 1,2-Diols from Alkynes. Organic Letters, 2002, 4, 383-386.	2.4	22
45	Synthesis of Pyranoid and Furanoid Glycals from Glycosyl Sulfoxides by Treatment with Organolithium Reagents. European Journal of Organic Chemistry, 2008, 2008, 3933-3942.	1.2	22
46	A novel entry to naturally occurring 5-alkenyl $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l} -lactones from d-glucose: syntheses of (+)-acetylphomalactone and (+)-asperlin. Chemical Communications, 1997, , 1647-1648.	2.2	21
47	A novel entry to 5a-carba-hexopyranoses from carbohydrates based on a 6-exo-dig radical cyclization: synthesis of 5a-carba-l²-d-mannopyranose pentaacetate. Chemical Communications, 1999, , 175-176.	2.2	21
48	Convergent stereocontrolled synthesis of substituted exo-glycals by Stille cross-coupling of halo-exo-glycals and stannanes. Tetrahedron Letters, 2006, 47, 6243-6246.	0.7	21
49	IPy ₂ BF ₄ /HF-Pyridine:  A New Combination of Reagents for the Transformation of Partially Unprotected Thioglycosides and <i>n</i> Journal of Organic Chemistry, 2007, 72, 10268-10271.	1.7	21
50	Protecting Groups in Carbohydrate Chemistry Profoundly Influence All Selectivities in Glycosyl Couplings. ACS Symposium Series, 2007, , 91-117.	0.5	21
51	π-Facial selectivity in Diels–Alder reactions of C-2-vinyl glycals. Stereocontrolled route to annulated C-glycopyranosides. Journal of the Chemical Society Chemical Communications, 1990, .	2.0	20
52	Formation and Reactivity of Novel Pyranosidic Nicholas Oxocarbenium Ions:  Access toC-Ketosides and Branched-ChainC-Ketosides. Organic Letters, 2006, 8, 3187-3190.	2.4	20
53	A Substrateâ€Based Approach to Skeletal Diversity from Dicobalt Hexacarbonyl (<i>C</i> 1)â€Alkynyl Glycals by Exploiting Its Combined Ferrier–Nicholas Reactivity. Chemistry - A European Journal, 2014, 20, 10492-10502.	1.7	20
54	Stereoselective synthesis of C-ketosides by Lewis acid-catalyzed C-glycosylation of alkynyl-ketoses. Tetrahedron Letters, 2002, 43, 8935-8940.	0.7	19

#	Article	IF	CITATIONS
55	Ferrier rearrangement: an update on recent developments. Carbohydrate Chemistry, 0, , 210-247.	0.3	19
56	Parlaying Câ \in "O chirality into Câ \in "C chirality: improving the cost/benefit ratio of carbohydrate templates. Chemical Communications, 1997, , 2251-2257.	2.2	18
57	Evidence for Efficient Unpromoted Regioselective Reactions of Vicinal and Non-Vicinal Diols. Australian Journal of Chemistry, 2002, 55, 123.	0.5	18
58	Stereodivergent synthesis of 5a-carba-hexopyranoses from carbohydrates via 6-exo-dig radical cyclization: preparation of 5a-carba- \hat{l}^2 -d-manno-, \hat{l}_2 -d-allo-, \hat{l}^2 -l-talo- and \hat{l}_2 -l-gulopyranose pentaacetates from d-mannose. Tetrahedron: Asymmetry, 2003, 14, 2961-2974.	1.8	18
59	An expeditious entry to carbohydrate derived enynes and ene-diynes via Sonogashira coupling of halo-exo-glycals. Tetrahedron Letters, 2004, 45, 6307-6310.	0.7	18
60	Reaction of 1,2-Orthoesters with HFâ^'Pyridine: A Method for the Preparation of Partly Unprotected Glycosyl Fluorides and Their Use in Saccharide Synthesis. Organic Letters, 2009, 11, 4128-4131.	2.4	18
61	A Survey of Recent Synthetic Applications of 2,3-Dideoxy-Hex-2-enopyranosides. Molecules, 2015, 20, 8357-8394.	1.7	18
62	Practical synthesis of an enantiomerically pure intermediate of the lactone moiety of mevinic acids. Journal of Organic Chemistry, 1992, 57, 1613-1615.	1.7	17
63	A Convenient, Short Synthesis of (E)-1,3-Butadienyl(tributyl)stannane. Synthesis, 1993, 1993, 943-944.	1.2	17
64	Expeditious entry to C-alkyl and C-aryl pyranoid glycals: reaction of anomeric glycosyl chlorides with organolithiums. Chemical Communications, 1996, , 2357-2358.	2.2	17
65	Improved synthesis of 2,3:4,6-di-O-isopropylidene-d-glucopyranose and -d-galactopyranose. Carbohydrate Research, 1999, 320, 138-142.	1.1	17
66	A combined intramolecular–intermolecular one-pot glycosylation approach for the synthesis of a branched trisaccharide. Chemical Communications, 2000, , 813-814.	2.2	17
67	6-endo Versus 5-exo radical cyclization: streamlined syntheses of carbahexopyranoses and derivatives by 6-endo-trig radical cyclization. Tetrahedron Letters, 2007, 48, 1645-1649.	0.7	17
68	Synthesis of <i>C</i> à€¶ Alkyl and Aryl Glycals from Pyranosyl or Furanosyl Chlorides by Treatment with Organolithium Reagents. European Journal of Organic Chemistry, 2009, 2009, 3579-3588.	1.2	17
69	Sonogashira Couplings of Halo―and Epoxyâ€Haloâ€ <i>exo</i> èGlycals: Concise Entry to Carbohydrateâ€Derived Enynes. European Journal of Organic Chemistry, 2010, 2010, 2910-2920.	1.2	17
70	Unexpected Stereocontrolled Access to $1\hat{1}_{+}, 1\hat{a} \in 2\hat{1}^{2}$ -Disaccharides from Methyl 1,2-Ortho Esters. Journal of Organic Chemistry, 2012, 77, 795-800.	1.7	17
71	An efficient route to homologated pyranosidic conjugated enals. Tetrahedron Letters, 1988, 29, 5533-5534.	0.7	16
72	Stereospecific access to equatorially functionalized geminal alkyl derivatives of hexopyranosides by cyclopalladation–oxidation. Journal of the Chemical Society Chemical Communications, 1988, .	2.0	16

#	Article	IF	Citations
73	Formation and reactivity of new Nicholas–Ferrier pyranosidic cations: novel access to oxepanes via a 1,6-hydride shift/cyclization sequence. Chemical Communications, 2010, 46, 6159.	2.2	16
74	Ready access to a branched Man5 oligosaccharide based on regioselective glycosylations of a mannose-tetraol with n-pentenyl orthoesters. Organic and Biomolecular Chemistry, 2012, 10, 8361.	1.5	16
75	Silicon-tethered radical cyclization and intramolecular Diels–Alder strategies are combined to provide a ready route to highly functionalized decalins. Journal of the Chemical Society Chemical Communications, 1993, , 762-764.	2.0	15
76	Methyl 1,2â€Orthoesters as Useful Glycosyl Donors in Glycosylation Reactions: A Comparison with <i>n</i> â€Pentâ€4â€enyl 1,2â€Orthoesters. European Journal of Organic Chemistry, 2012, 2012, 3122-3131.	1.2	15
77	Access to 2,6-Dipropargylated BODIPYs as "Clickable―Congeners of Pyrromethene-567 Dye: Photostability and Synthetic Versatility. Organic Letters, 2021, 23, 6801-6806.	2.4	15
78	Reactions of abietic acid methyl ester with m-chloroperbenzoic acid. Tetrahedron, 1986, 42, 573-582.	1.0	14
79	Stereospecificity in Diels–Alder reactions of dienes and dienophiles derived from methyl 4,6-O-benzylidene-α-D-glucopyranoside. Journal of the Chemical Society Chemical Communications, 1988, ,706-707.	2.0	14
80	A novel entry to cyclohexanes and cyclopentanes from carbohydrates via inversion of radical reactivity in hex-2-enono-Î'-lactones. Journal of the Chemical Society Chemical Communications, 1992, , 613-615.	2.0	14
81	Reciprocal Donor–Acceptor Selectivity: the Influence of the Donor Oâ€2 Substituent in the Regioselective Mannosylation of <i>myo</i> â€Inositol Orthopentanoate. European Journal of Organic Chemistry, 2009, 2009, 403-411.	1.2	14
82	A novel entry to C-glycals via diethylzinc-mediated umpolung of π-allyl palladium derived from 1-exo-methylene 2,3-anhydrofuranoses. Tetrahedron Letters, 2003, 44, 8433-8435.	0.7	13
83	Intramolecular Diels-Alder reactions on pyranose trienes. Stereoselective access to bis-annulated pyranosides Tetrahedron Letters, 1990, 31, 2301-2304.	0.7	12
84	Fine tuning of chemo- and stereo-selectivity in cyclization reactions of tethered radicals derived from 4-O-substituted- \hat{l}_{\pm} -D-erythro-oct-2,6-dienopyranosides. Stereoselective access to carbocycles and branched-chain sugars. Journal of the Chemical Society Chemical Communications, 1994, .	2.0	12
85	Some studies on proximal addition–elimination procedures in intermolecular carbon–carbon bond-forming free radical reactions. Convenient synthesis of ethyl (E)-(ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock Perkin Transactions 1, 1994, , 1689-1695.	10,Tf 50 2	262 Td (2,3 12
86	Stereocontrolled entry to \hat{l}^2 -C-glycosides and bis-C,C-glycosides from C-glycals: preparation of a highly functionalized triene from d-mannose. Tetrahedron: Asymmetry, 2001, 12, 2175-2183.	1.8	12
87	A combined, 6-exo-dig radical cyclization-palladium catalyzed allylic amination, approach to aminocarbasugar analogs: synthesis of novel N-substituted aminocyclitols from d-mannose. Tetrahedron Letters, 2002, 43, 7863-7866.	0.7	12
88	Some Aspects of Selectivity in the Reaction of Glycosyl Donors*. Journal of Carbohydrate Chemistry, 2005, 24, 665-675.	0.4	12
89	Ready Transformation of Partially Unprotected Thioglycosides into Glycosyl Fluorides Mediated by NIS/HF–Pyridine or Et ₃ N·3HF. European Journal of Organic Chemistry, 2008, 2008, 5037-5041.	1.2	12
90	A Reverse Strategy for synthesis of nucleosides based on n-pentenyl orthoester donors. Chemical Communications, 2013, 49, 3251.	2.2	12

#	Article	IF	CITATIONS
91	Bringing Color to Sugars: The Chemical Assembly of Carbohydrates to BODIPY Dyes. Chemical Record, 2021, 21, 3112-3130.	2.9	12
92	BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry - A European Journal, 2020, 26, 5388-5399.	1.7	12
93	Carbohydrates to Carbocycles: Regio- and Stereoselectivity in the Intramolecular [2+2] Photocycloaddition of Dienic 2-Enono-Î-lactones. Synlett, 1998, 1998, 1402-1404.	1.0	11
94	Stereodivergent Synthesis of Carbasugars from D-Mannose. Syntheses of 5a-Carba-α-D-allose, β-L-Talose, and α-L-Gulose Pentaacetates. Synlett, 2002, 2002, 0891-0894.	1.0	11
95	Synthesis of complex carbobicyclic compounds from sugar allyltins: functionalization of the allylic position in bicyclo[4.3.0]nonene derivatives. Tetrahedron: Asymmetry, 2005, 16, 513-518.	1.8	10
96	Synthesis of 2,3:4,6-di-O-isopropylidene-d-allopyranose from d-glucose. Carbohydrate Research, 2005, 340, 1872-1875.	1.1	10
97	Three-Component Assembly of Amines, Boronic Acids, and a Polyfunctionalized Furanose: A Concise Entry to Furanose-Based Carbohydrate Templates. Journal of Organic Chemistry, 2009, 74, 6323-6326.	1.7	10
98	1â€ <i>exo</i> â€Alkylideneâ€2,3â€anhydrofuranoses: Valuable Synthons in the Preparation of Furanoseâ€Based Templates. European Journal of Organic Chemistry, 2010, 2010, 5619-5632.	1.2	9
99	Methyl 1,2â€Orthoesters in Acidâ€Washed Molecular Sieves Mediated Glycosylations. ChemistrySelect, 2016, 1, 6011-6015.	0.7	9
100	Stereoselective Syntheses of Ethyl (Z)- and (E)-Octa-2,6-dienopyranosiduronates from Ethyl 2,3-Dideoxy-α-D-erythro-hex-2-enopyranoside. Synlett, 1993, 1993, 557-560.	1.0	8
101	Novel strategies for the preparation of aminocarbasugar analogues: syntheses of N-substituted aminocyclitols from d-mannose. Tetrahedron: Asymmetry, 2005, 16, 2401-2407.	1.8	8
102	Study of the Regioselectivity of Intra- and Intermolecular Glycosylations of Mannoside Diol Acceptors. Synlett, 2005, 2005, 1095-1100.	1.0	8
103	Towards Efficient and Photostable Redâ€Emitting Photonic Materials Based on Symmetric Allâ€BODIPYâ€Triads, â€Pentads, and â€Hexads. Chemistry - A European Journal, 2019, 25, 14959-14971.	1.7	8
104	A Simple Synthesis of 4-Amino-6-aryl-2-thioxotetra-and -hexahydropyrimidines. Synthesis, 1985, 1985, 89-92.	1.2	7
105	A route to functionalized branched-chain amino sugars via nitrous acid promoted spiroaziridine formation. Journal of Organic Chemistry, 1988, 53, 4616-4618.	1.7	7
106	Stereocontrolled entry to 2,5-disubstituted tetrahydrofurans from hex-2-enono-Î-lactones under mild conditions. Tetrahedron Letters, 1992, 33, 5105-5106.	0.7	7
107	Synthesis of Furanosyl <i>C</i> à€I Glycals through Palladiumâ€Catalyzed Reactions of a Furanosyl 2,3â€Anhydroâ€ <i>exo</i> à6glycal. European Journal of Organic Chemistry, 2009, 2009, 4627-4636.	1.2	7
108	Solventâ€Sensitive Emitting Ureaâ€Bridged bisâ€BODIPYs: Ready Access by a Oneâ€Pot Tandem Staudinger/Azaâ€Wittig Ureation. Chemistry - A European Journal, 2017, 23, 17511-17520.	1.7	7

#	Article	IF	CITATIONS
109	Diversityâ€Oriented Synthetic Endeavors of Newly Designed Ferrier and Ferrierâ€Nicholas Systems Derived from 1â€ <i>C</i> â€Alkynylâ€2â€deoxyâ€2â€ <i>C</i> â€Methylene Pyranosides. European Journal of Org. Chemistry, 2018, 2018, 5355-5374.	a ni 2	7
110	Chemoselective Conjugate Reduction of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Esters and Lactones Under Mild Conditions. Synlett, 1991, 1991, 825-826.	1.0	6
111	Synthetic Strategies Directed Towards 5aâ€Carbahexopyranoses and Derivatives Based on 6â€ <i>endo</i> endofi>â€ <i>trig</i> endofi> Radical Cyclizations. European Journal of Organic Chemistry, 2011, 2011, 7116-7132.	1.2	6
112	A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules, 2019, 24, 2050.	1.7	6
113	A Concise Route to Water-Soluble 2,6-Disubstituted BODIPY-Carbohydrate Fluorophores by Direct Ferrier-Type C-Glycosylation. Journal of Organic Chemistry, 2021, 86, 9181-9188.	1.7	6
114	Pyranose glycals in the generation of skeletal diversity. Carbohydrate Chemistry, 0, , 26-58.	0.3	6
115	Ferrier–Nicholas Cations from Câ€3â€Alkynylglycals: Access to Câ€3â€Branched Allylic Glycosides and Ringâ€Opening Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2501-2511.	1.2	5
116	Tuning the Photonic Behavior of Symmetrical bis-BODIPY Architectures: The Key Role of the Spacer Moiety. Frontiers in Chemistry, 2019, 7, 801.	1.8	5
117	Glycosyl fluorides from n-pentenyl-related glycosyl donors— Application to glycosylation strategies. Canadian Journal of Chemistry, 2013, 91, 51-65.	0.6	4
118	Ferrier–Nicholas pyranosidic cations: application to diversity-oriented synthesis. Pure and Applied Chemistry, 2014, 86, 1357-1364.	0.9	4
119	A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88. Molecules, 2021, 26, 2909.	1.7	4
120	Sugar Furanoses as Useful Handles for Molecular Diversity. Current Organic Synthesis, 2014, 11, 342-360.	0.7	4
121	The C4-exo methylene isomer of avermectin B1a: Synthesis via an allylic radical and bioactivity. Tetrahedron, 1992, 48, 6763-6768.	1.0	3
122	Pyranose-Derived Dienes and Conjugated Enals. ACS Symposium Series, 1992, , 33-49.	0.5	3
123	Template Directed Cyclo-Glycosylation: A Convenient Approach to Unsymmetrical Isophthalic Disaccharide Esters. Influence of the Spacer in the Stereochemistry of the Glycosylation. Synlett, 2000, 2000, 22-26.	1.0	3
124	Carbohydrates and BODIPYs: access to bioconjugatable and water-soluble BODIPYs. Pure and Applied Chemistry, 2019, 91, 1073-1083.	0.9	3
125	Further Insight into †Matching' of Donors and Acceptors via Reciprocal ÂĐonor Acceptor Selectivity (RDAS) Studies. Synlett, 2003, 2003, 2203-2207.	1.0	2
126	O-Glycosyl Donors., 2008,, 565-659.		2

#	Article	IF	CITATIONS
127	Synthesis of Geminal Alkyl and Equatorially Functionalized Geminal Alkyl Derivatives of Hexopyranosides by Carbopalladation. Journal of Carbohydrate Chemistry, 1989, 8, 429-441.	0.4	1
128	Furanose-based templates in the chemoselective generation of molecular diversity. Carbohydrate Chemistry, 2012, , 376-397.	0.3	1
129	Alkyne dicobalt complexes in carbohydrates: Synthetic applications. , 2020, , 101-137.		1
130	Synthesis of furanoid and pyranoid C-1 aryl glycals by reaction of glycosyl chlorides with organolithium reagents. Arkivoc, 2009, 2010, 288-302.	0.3	1
131	A synthetic route to pyranoid epoxy-exo-glycals from D-glucose. Arkivoc, 2011, 2011, 33-41.	0.3	1
132	Access to n-pentenyl tetra- and pentasaccharide analogues of the antitumor drug PI-88 based on 1,2-methyl orthoester glycosyl donors. Carbohydrate Research, 2022, 516, 108557.	1.1	1
133	Reactions at Oxygen Atoms. , 2001, , 467-500.		0
134	An Overview of Reliable Radical Cyclization Strategies for the Preparation of 5a- Carbapyranoses. Current Organic Chemistry, 2014, 18, 1701-1715.	0.9	0