Heikki Hyoty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357924/publications.pdf Version: 2024-02-01

		14655	20358
282	17,164	66	116
papers	citations	h-index	g-index
293	293	293	14025
293	295	293	14025
all docs	docs citations	times ranked	citing authors

HEIKKI HVOTV

#	Article	IF	CITATIONS
1	Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 2018, 562, 583-588.	27.8	1,220
2	Toward defining the autoimmune microbiome for type 1 diabetes. ISME Journal, 2011, 5, 82-91.	9.8	709
3	Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS ONE, 2011, 6, e25792.	2.5	660
4	Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 2008, 205, 2975-2984.	8.5	399
5	Environmental Triggers and Determinants of Type 1 Diabetes. Diabetes, 2005, 54, S125-S136.	0.6	385
6	A Prospective Study of the Role of Coxsackie B and Other Enterovirus Infections in the Pathogenesis of IDDM. Diabetes, 1995, 44, 652-657.	0.6	350
7	Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet, The, 2008, 372, 1746-1755.	13.7	345
8	Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host and Microbe, 2018, 24, 146-154.e4.	11.0	311
9	Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014, 57, 1569-1577.	6.3	274
10	Detection of a Low-Grade Enteroviral Infection in the Islets of Langerhans of Living Patients Newly Diagnosed With Type 1 Diabetes. Diabetes, 2015, 64, 1682-1687.	0.6	255
11	Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Frontiers in Microbiology, 2014, 5, 678.	3.5	241
12	Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study Diabetes, 2000, 49, 1314-1318.	0.6	235
13	Environmental factors in the etiology of type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 115, 18-29.	2.4	233
14	Coxsackievirus B1 Is Associated With Induction of β-Cell Autoimmunity That Portends Type 1 Diabetes. Diabetes, 2014, 63, 446-455.	0.6	228
15	The role of viruses in human diabetes. Diabetologia, 2002, 45, 1353-1361.	6.3	223
16	Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia, 2012, 55, 1926-1936.	6.3	195
17	Enterovirus Infection and Progression From Islet Autoimmunity to Type 1 Diabetes. Diabetes, 2010, 59, 3174-3180.	0.6	192
18	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184

#	Article	IF	CITATIONS
19	Rectal Bleeding in Infancy: Clinical, Allergological, and Microbiological Examination. Pediatrics, 2006, 117, e760-e768.	2.1	183
20	Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances, 2020, 6, .	10.3	174
21	Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nature Medicine, 2019, 25, 1865-1872.	30.7	161
22	The diagnosis of insulitis in human type 1 diabetes. Diabetologia, 2013, 56, 2541-2543.	6.3	159
23	Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes, 2014, 63, 2402-2414.	0.6	158
24	Enterovirus RNA in Blood Is Linked to the Development of Type 1 Diabetes. Diabetes, 2011, 60, 276-279.	0.6	155
25	Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia, 2014, 57, 841-843.	6.3	149
26	Islet Cell Antibody Seroconversion in Children Is Temporally Associated with Enterovirus Infections. Journal of Infectious Diseases, 1997, 175, 554-560.	4.0	148
27	A sixâ€fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Annals of Medicine, 2005, 37, 67-72.	3.8	142
28	Factors That Increase Risk of Celiac Disease Autoimmunity After a Gastrointestinal Infection in Early Life. Clinical Gastroenterology and Hepatology, 2017, 15, 694-702.e5.	4.4	140
29	Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: A prospective study. Journal of Medical Virology, 2000, 61, 214-220.	5.0	133
30	Type 1 Diabetes Is Associated With Enterovirus Infection in Gut Mucosa. Diabetes, 2012, 61, 687-691.	0.6	128
31	Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. Journal of Medical Virology, 2003, 69, 91-98.	5.0	126
32	Virus Antibody Survey in Different European Populations Indicates Risk Association Between Coxsackievirus B1 and Type 1 Diabetes. Diabetes, 2014, 63, 655-662.	0.6	126
33	Lower economic status and inferior hygienic environment may protect against celiac disease. Annals of Medicine, 2008, 40, 223-231.	3.8	125
34	Timing of infant feeding in relation to childhood asthma and allergic diseases. Journal of Allergy and Clinical Immunology, 2013, 131, 78-86.	2.9	116
35	Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia, 2005, 48, 1280-1287.	6.3	113
36	Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia, 2017, 60, 1931-1940.	6.3	112

#	Article	IF	CITATIONS
37	Viruses in type 1 diabetes. Pediatric Diabetes, 2016, 17, 56-64.	2.9	108
38	Several different enterovirus serotypes can be associated with prediabetic autoimmune episodes and onset of overt IDDM. , 1998, 56, 74-78.		106
39	A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes, 1995, 44, 652-657.	0.6	105
40	Food diversity in infancy and the risk of childhood asthma and allergies. Journal of Allergy and Clinical Immunology, 2014, 133, 1084-1091.	2.9	104
41	The relationship between breastfeeding and reported respiratory and gastrointestinal infection rates in young children. BMC Pediatrics, 2019, 19, 339.	1.7	104
42	Allergic sensitization and microbial loadâ€f–â€fa comparison between Finland and Russian Karelia. Clinical and Experimental Immunology, 2007, 148, 47-52.	2.6	103
43	Maternal Antibodies in Breast Milk Protect the Child From Enterovirus Infections. Pediatrics, 2007, 119, 941-946.	2.1	102
44	Effects of Gluten Intake on Risk of Celiac Disease: A Case-Control Study on a Swedish Birth Cohort. Clinical Gastroenterology and Hepatology, 2016, 14, 403-409.e3.	4.4	102
45	The â€~Hygiene hypothesis' and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. Apmis, 2013, 121, 478-493.	2.0	97
46	Fate of Five Celiac Disease-Associated Antibodies During Normal Diet in Genetically At-Risk Children Observed from Birth in a Natural History Study. American Journal of Gastroenterology, 2007, 102, 2026-2035.	0.4	95
47	Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia, 2018, 61, 1193-1202.	6.3	95
48	Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors. Frontiers in Microbiology, 2018, 9, 84.	3.5	95
49	Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies. Diabetes, 2017, 66, 437-447.	0.6	94
50	Enteroviruses in the pathogenesis of type 1 diabetes. Seminars in Immunopathology, 2011, 33, 45-55.	6.1	93
51	Decline of mumps antibodies in Type 1 (insulin-dependent) diabetic children and a plateau in the rising incidence of Type 1 diabetes after introduction of the mumps-measles-rubella vaccine in Finland. Diabetologia, 1993, 36, 1303-1308.	6.3	91
52	Detection of enteroviruses in the intestine of type 1 diabetic patients. Clinical and Experimental Immunology, 2007, 151, 71-75.	2.6	91
53	Diagnosis of enterovirus and rhinovirus infections by RT-PCR and time-resolved fluorometry with lanthanide chelate labeled probes. Journal of Medical Virology, 1999, 59, 378-384.	5.0	89
54	A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nature Medicine, 2020, 26, 1247-1255.	30.7	83

#	Article	lF	CITATIONS
55	Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut, 2020, 69, 1416-1422.	12.1	82
56	Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes. Diabetes, 2013, 62, 3268-3274.	0.6	81
57	Can enterovirus infections explain the increasing incidence of type 1 diabetes?. Diabetes Care, 2000, 23, 414-416.	8.6	79
58	Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children. Diabetologia, 2001, 44, 818-823.	6.3	79
59	Association Between Early-Life Antibiotic Use and the Risk of Islet or Celiac Disease Autoimmunity. JAMA Pediatrics, 2017, 171, 1217.	6.2	79
60	Introduction of complementary foods in infancy and atopic sensitization at the age of 5Âyears: timing and food diversity in a Finnish birth cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 507-516.	5.7	77
61	The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 Update. Current Diabetes Reports, 2018, 18, 136.	4.2	77
62	Expression of Toll-like Receptors in the Pancreas of Recent-onset Fulminant Type 1 Diabetes. Endocrine Journal, 2010, 57, 211-219.	1.6	76
63	Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia, 2017, 60, 424-431.	6.3	73
64	Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes, 2018, 67, 146-154.	0.6	72
65	Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: Results from the EPIVIR project. Journal of Medical Virology, 2004, 72, 610-617.	5.0	70
66	Natural history of transglutaminase autoantibodies and mucosal changes in children carrying HLA-conferred celiac disease susceptibility. Scandinavian Journal of Gastroenterology, 2005, 40, 1182-1191.	1.5	70
67	Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial. Clinical and Experimental Immunology, 2003, 132, 271-277.	2.6	69
68	Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia, 2008, 51, 1796-1802.	6.3	69
69	Enterovirus infections and type 1 diabetes. Annals of Medicine, 2002, 34, 138-147.	3.8	68
70	PCR inhibition in stool samples in relation to age of infants. Journal of Clinical Virology, 2009, 44, 211-214.	3.1	67
71	Human parechovirus 1 infections in young children—no association with type 1 diabetes. Journal of Medical Virology, 2007, 79, 457-462.	5.0	66
72	Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5Âyears after birth in human blood leukocytes. Clinical Epigenetics, 2015, 7, 34.	4.1	65

#	Article	IF	CITATIONS
73	Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia, 2019, 62, 744-753.	6.3	65
74	Real-time PCR for rapid diagnosis of entero- and rhinovirus infections using LightCycler. Journal of Clinical Virology, 2004, 29, 99-104.	3.1	64
75	Shortâ€ŧerm direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen, 2019, 8, e00645.	3.0	63
76	Maternal First-Trimester Enterovirus Infection and Future Risk of Type 1 Diabetes in the Exposed Fetus. Diabetes, 2002, 51, 2568-2571.	0.6	60
77	T-cell responses to enterovirus antigens in children with type 1 diabetes. Diabetes, 2000, 49, 1308-1313.	0.6	58
78	Serological Evidence of Thyroid Autoimmunity among Schoolchildren in Two Different Socioeconomic Environments. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 729-734.	3.6	58
79	Gut Virome Sequencing in Children With Early Islet Autoimmunity. Diabetes Care, 2015, 38, 930-933.	8.6	58
80	A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia, 2018, 61, 476-481.	6.3	58
81	Human parechoviruses are frequently detected in stool of healthy Finnish children. Journal of Clinical Virology, 2012, 54, 156-161.	3.1	57
82	Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP). Scientific Reports, 2018, 8, 10635.	3.3	56
83	A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Science Advances, 2020, 6, eaaz2433.	10.3	55
84	Antibody cross-reactivity induced by the homologous regions in glutamic acid decarboxylase (GAD65) and 2C protein of coxsackievirus B4. Clinical and Experimental Immunology, 1996, 104, 398-405.	2.6	53
85	Viral interference induced by live attenuated virus vaccine (OPV) can prevent otitis media. Vaccine, 2011, 29, 8615-8618.	3.8	53
86	Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 723-729.	3.6	53
87	Isolation of enterovirus strains from children with preclinical TypeÂ1 diabetes. Diabetic Medicine, 2004, 21, 156-164.	2.3	52
88	The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?. PLoS ONE, 2017, 12, e0187852.	2.5	52
89	Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ, 2018, 6, e4508.	2.0	52
90	Mumps virus infects Beta cells in human fetal islet cell cultures upregulating the expression of HLA class I molecules. Diabetologia, 1992, 35, 63-69.	6.3	51

#	Article	IF	CITATIONS
91	Human parechovirus seroprevalence in Finland and the Netherlands. Journal of Clinical Virology, 2013, 58, 211-215.	3.1	51
92	Role of Viruses and Other Microbes in the Pathogenesis of Type 1 Diabetes. International Reviews of Immunology, 2014, 33, 284-295.	3.3	51
93	The HLA-DR phenotype modulates the humoral immune response to enterovirus antigens. Diabetologia, 2003, 46, 1100-1105.	6.3	50
94	Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiology, 2018, 13, 737-744.	2.0	50
95	Signs of Â-Cell Autoimmunity in Nondiabetic Schoolchildren: A comparison between Russian Karelia with a low incidence of type 1 diabetes and Finland with a high incidence rate. Diabetes Care, 2007, 30, 95-100.	8.6	48
96	Evolution and conservation in human parechovirus genomes. Journal of General Virology, 2009, 90, 1702-1712.	2.9	48
97	Early Infant Diet and Islet Autoimmunity in the TEDDY Study. Diabetes Care, 2018, 41, 522-530.	8.6	48
98	Serological evaluation of the role of cytomegalovirus in the pathogenesis of IDDM: a prospective study. Diabetologia, 1995, 38, 705-710.	6.3	47
99	Serum Proteomes Distinguish Children Developing Type 1 Diabetes in a Cohort With HLA-Conferred Susceptibility. Diabetes, 2015, 64, 2265-2278.	0.6	46
100	Developing a vaccine for type 1 diabetes by targeting coxsackievirus B. Expert Review of Vaccines, 2018, 17, 1071-1083.	4.4	46
101	Enteral virus infections in early childhood and an enhanced type 1 diabetes-associated antibody response to dietary insulin. Journal of Autoimmunity, 2006, 27, 54-61.	6.5	45
102	Maternal Enterovirus Infection during Pregnancy as a Risk Factor in Offspring Diagnosed with Type 1 Diabetes between 15 and 30 Years of Age. Experimental Diabetes Research, 2008, 2008, 1-6.	3.8	44
103	Methods, quality control and specimen management in an international multicentre investigation of type 1 diabetes: TEDDY. Diabetes/Metabolism Research and Reviews, 2013, 29, 557-567.	4.0	44
104	Imbalance of bacteriome profiles within the Finnish Diabetes Prediction and Prevention study: Parallel use of 16S profiling and virome sequencing in stool samples from children with islet autoimmunity and matched controls. Pediatric Diabetes, 2017, 18, 588-598.	2.9	44
105	Enterovirus infections and enterovirus specific T-cell responses in infancy. Journal of Medical Virology, 1998, 54, 226-232.	5.0	42
106	Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia, 2020, 63, 1017-1031.	6.3	42
107	A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia, 2015, 58, 346-354.	6.3	41
108	Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2020, 43, 2066-2073.	8.6	41

#	Article	IF	CITATIONS
109	Quantitative <i>CrAssphage</i> realâ€ŧime PCR assay derived from data of multiple geographically distant populations. Journal of Medical Virology, 2018, 90, 767-771.	5.0	40
110	Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatric Diabetes, 2018, 19, 293-299.	2.9	40
111	Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group. Journal of Medical Virology, 2000, 61, 214-20.	5.0	40
112	Enterovirus infections and insulin dependent diabetes mellitus—evidence for causality. Clinical and Diagnostic Virology, 1998, 9, 77-84.	1.7	39
113	Responses of Coxsackievirus B4-Specific T-Cell Lines to 2C Protein—Characterization of Epitopes with Special Reference to the GAD65 Homology Region. Virology, 2001, 284, 131-141.	2.4	39
114	Maternal Enterovirus Infection as a Risk Factor for Type 1 Diabetes in the Exposed Offspring. Diabetes Care, 2012, 35, 1328-1332.	8.6	39
115	Interaction of enterovirus infection and cow's milkâ€based formula nutrition in type 1 diabetesâ€associated autoimmunity. Diabetes/Metabolism Research and Reviews, 2012, 28, 177-185.	4.0	39
116	Infection of human islets of langerhans with two strains of coxsackie B virus serotype 1: Assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. Journal of Medical Virology, 2014, 86, 1402-1411.	5.0	39
117	Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media. MSphere, 2017, 2, .	2.9	39
118	Yard vegetation is associated with gut microbiota composition. Science of the Total Environment, 2020, 713, 136707.	8.0	39
119	Effect of coincident enterovirus infection and cows' milk exposure on immunisation to insulin in early infancy. Diabetologia, 2002, 45, 531-534.	6.3	37
120	Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice. Antiviral Research, 2014, 104, 93-101.	4.1	37
121	Diagnosis of enterovirus and rhinovirus infections by RT-PCR and time-resolved fluorometry with lanthanide chelate labeled probes. Journal of Medical Virology, 1999, 59, 378-84.	5.0	37
122	Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatric Diabetes, 2011, 12, 156-164.	2.9	36
123	The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Frontiers in Microbiology, 2014, 5, 361.	3.5	36
124	Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environment International, 2021, 157, 106811.	10.0	36
125	Molecular Analysis of an Echovirus 3 Strain Isolated from an Individual Concurrently with Appearance of Islet Cell and IA-2 Autoantibodies. Journal of Clinical Microbiology, 2006, 44, 441-448.	3.9	35
126	Human enterovirus 71 strains in the background population and in hospital patients in Finland. Journal of Clinical Virology, 2013, 56, 348-353.	3.1	35

#	Article	IF	CITATIONS
127	Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia, 2014, 57, 392-401.	6.3	35
128	Standard of hygiene and immune adaptation in newborn infants. Clinical Immunology, 2014, 155, 136-147.	3.2	35
129	Age at Development of Type 1 Diabetes– and Celiac Disease–Associated Antibodies and Clinical Disease in Genetically Susceptible Children Observed From Birth. Diabetes Care, 2010, 33, 774-779.	8.6	34
130	Next-generation sequencing for viruses in children with rapid-onset type 1 diabetes. Diabetologia, 2013, 56, 1705-1711.	6.3	34
131	Temporal variation in indoor transfer of dirt-associated environmental bacteria in agricultural and urban areas. Environment International, 2019, 132, 105069.	10.0	34
132	Microbial Exposure in Infancy and Subsequent Appearance of Type 1 Diabetes Mellitus–Associated Autoantibodies. JAMA Pediatrics, 2014, 168, 755.	6.2	33
133	Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environment International, 2019, 130, 104894.	10.0	32
134	Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3613-3626.	5.7	32
135	Moraxella catarrhalis Might Be More Common than Expected in Acute Otitis Media in Young Finnish Children. Journal of Clinical Microbiology, 2016, 54, 2373-2379.	3.9	31
136	B-Cell Responses to Human Bocaviruses 1–4: New Insights from a Childhood Follow-Up Study. PLoS ONE, 2015, 10, e0139096.	2.5	31
137	Use of antisera directed against dsRNA to detect viral infections in formalin-fixed paraffin-embedded tissue. Journal of Clinical Virology, 2010, 49, 180-185.	3.1	30
138	Coxsackie–adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ Open Diabetes Research and Care, 2016, 4, e000219.	2.8	30
139	Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia, 2019, 62, 2287-2297.	6.3	30
140	Persistent Alterations in Plasma Lipid Profiles Before Introduction of Gluten in the Diet Associated With Progression to Celiac Disease. Clinical and Translational Gastroenterology, 2019, 10, e00044.	2.5	30
141	Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatric Allergy and Immunology, 2020, 31, 265-272.	2.6	30
142	Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes, 2020, 69, 465-476.	0.6	30
143	Temporal Relationship between Human Parechovirus 1 Infection and Otitis Media in Young Children. Journal of Infectious Diseases, 2008, 198, 35-40.	4.0	29
144	Human herpes virus 6 and multiple sclerosis: a Finnish twin study. Multiple Sclerosis Journal, 2008, 14, 54-58.	3.0	29

#	Article	IF	CITATIONS
145	Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. Journal of Autoimmunity, 2010, 35, 70-76.	6.5	29
146	Enterovirus RNA in longitudinal blood samples and risk of islet autoimmunity in children with a high genetic risk of type 1 diabetes: the MIDIA study. Diabetologia, 2014, 57, 2193-2200.	6.3	29
147	T cell Responses to Enterovirus Antigens and to β-cell Autoantigens in Unaffected Children Positive for IDDM-Associated Autoantibodies. Journal of Autoimmunity, 1999, 12, 269-278.	6.5	28
148	Humoral β -cell autoimmunity is rare in patients with the congenital rubella syndrome. Clinical and Experimental Immunology, 2003, 133, 378-383.	2.6	28
149	Molecular epidemiology of enteroviruses in young children at increased risk of type 1 diabetes. PLoS ONE, 2018, 13, e0201959.	2.5	28
150	Serum 25-hydroxyvitamin D concentration in childhood and risk of islet autoimmunity and type 1 diabetes: the TRIGR nested case–control ancillary study. Diabetologia, 2020, 63, 780-787.	6.3	28
151	Distinct Growth Phases in Early Life Associated With the Risk of Type 1 Diabetes: The TEDDY Study. Diabetes Care, 2020, 43, 556-562.	8.6	28
152	Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine, 2017, 35, 3718-3725.	3.8	27
153	An Increase in Serum 25-Hydroxyvitamin D Concentrations Preceded a Plateau in Type 1 Diabetes Incidence in Finnish Children. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2353-E2356.	3.6	26
154	Exploring the risk factors for differences in the cumulative incidence of coeliac disease in two neighboring countries: the prospective DIABIMMUNE study. Digestive and Liver Disease, 2016, 48, 1296-1301.	0.9	26
155	Detection of enterovirus in the thyroid tissue of patients with graves' disease. Journal of Medical Virology, 2013, 85, 512-518.	5.0	25
156	Development and maturation of norovirus antibodies in childhood. Microbes and Infection, 2016, 18, 263-269.	1.9	25
157	Detection and localization of viral infection in the pancreas of patients with type 1 diabetes using short fluorescently-labelled oligonucleotide probes. Oncotarget, 2017, 8, 12620-12636.	1.8	25
158	Human rhinoviruses including group C are common in stool samples of young Finnish children. Journal of Clinical Virology, 2013, 56, 334-338.	3.1	24
159	Inflammation and Increased Myxovirus Resistance Protein A Expression in Thyroid Tissue in the Early Stages of Hashimoto's Thyroiditis. Thyroid, 2013, 23, 334-341.	4.5	24
160	Multiple consecutive norovirus infections in the first 2Âyears of life. European Journal of Pediatrics, 2015, 174, 1679-1683.	2.7	24
161	A method for reporting and classifying acute infectious diseases in a prospective study of young children: TEDDY. BMC Pediatrics, 2015, 15, 24.	1.7	24
162	Development of T cell immunity to norovirus and rotavirus in children under five years of age. Scientific Reports, 2019, 9, 3199.	3.3	24

#	Article	IF	CITATIONS
163	Enterovirus infections and type 1 diabetes. Annals of Medicine, 2002, 34, 138-47.	3.8	24
164	Coxsackievirus B3-Induced Cellular Protrusions: Structural Characteristics and Functional Competence. Journal of Virology, 2011, 85, 6714-6724.	3.4	23
165	Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. Journal of Medical Virology, 2014, 86, 1412-1420.	5.0	23
166	Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells. Journal of Clinical Virology, 2016, 77, 21-28.	3.1	23
167	An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood. Diabetes Care, 2021, 44, 2260-2268.	8.6	23
168	A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes. Scientific Data, 2018, 5, 180250.	5.3	23
169	Environmental causes: viral causes. Endocrinology and Metabolism Clinics of North America, 2004, 33, 27-44.	3.2	22
170	Circulating Vitamin D Concentrations in Two Neighboring Populations With Markedly Different Incidence of Type 1 Diabetes. Diabetes Care, 2006, 29, 1458-1459.	8.6	22
171	Gestational respiratory infections interacting with offspring HLA and CTLA-4 modifies incident β-cell autoantibodies. Journal of Autoimmunity, 2018, 86, 93-103.	6.5	22
172	Decreased antibody reactivity to Epsteinâ€Barr virus capsid antigen in type 1 (insulinâ€dependent) diabetes mellitus. Apmis, 1991, 99, 359-363.	2.0	21
173	T Cell Epitopes in Coxsackievirus B4 Structural Proteins Concentrate in Regions Conserved between Enteroviruses. Virology, 2002, 293, 217-224.	2.4	21
174	Intrauterine Exposure to Maternal Enterovirus Infection as a Risk Factor for Development of Autoimmune Thyroiditis During Childhood and Adolescence. Thyroid, 2004, 14, 367-370.	4.5	21
175	Seroconversion to Islet Autoantibodies After Enterovirus Infection in Early Pregnancy. Viral Immunology, 2012, 25, 254-261.	1.3	21
176	Avoidance of Cow's Milk–Based Formula for At-Risk Infants Does Not Reduce Development of Celiac Disease: A Randomized Controlled Trial. Gastroenterology, 2017, 153, 961-970.e3.	1.3	21
177	Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC Genomics, 2017, 18, 378.	2.8	20
178	Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. IScience, 2019, 19, 340-357.	4.1	20
179	Comparison of enterovirus-specific cellular immunity in two populations of young children vaccinated with inactivated or live poliovirus vaccines. Clinical and Experimental Immunology, 1999, 117, 100-105.	2.6	19
180	A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine, 2019, 37, 5962-5971.	3.8	19

#	Article	IF	CITATIONS
181	Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine, 2019, 37, 7509-7518.	3.8	19
182	Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes. Biomolecules, 2019, 9, 33.	4.0	19
183	Early-life exposure to perfluorinated alkyl substances modulates lipid metabolism in progression to celiac disease. Environmental Research, 2020, 188, 109864.	7.5	19
184	Enterovirus Infections Are Associated With the Development of Celiac Disease in a Birth Cohort Study. Frontiers in Immunology, 2020, 11, 604529.	4.8	19
185	Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study. Diabetologia, 2021, 64, 2491-2501.	6.3	19
186	Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes, 2021, 70, 2871-2878.	0.6	19
187	Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers. Scientific Reports, 2022, 12, 6518.	3.3	19
188	Virus Infections as Potential Targets of Preventive Treatments for Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 260-271.	1.3	18
189	Influenza A virus antibodies show no association with pancreatic islet autoantibodies in children genetically predisposed to type 1 diabetes. Diabetologia, 2015, 58, 2592-2595.	6.3	18
190	A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Scientific Reports, 2018, 8, 33.	3.3	18
191	Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children. Diabetologia, 2018, 61, 193-202.	6.3	18
192	Immunisation and Type 1 Diabetes Mellitus. Drug Safety, 1999, 20, 207-212.	3.2	17
193	Developing a vaccine for Type 1 diabetes through targeting enteroviral infections. Expert Review of Vaccines, 2014, 13, 989-999.	4.4	17
194	Exocrine pancreas function decreases during the progression of the beta ell damaging process in young prediabetic children. Pediatric Diabetes, 2018, 19, 398-402.	2.9	17
195	DETECTION OF LACTOBACILLI IN MONTHLY MAIL-IN STOOL SAMPLES FROM 3-18 MONTHS OLD INFANTS AT GENETIC RISK FOR TYPE 1 DIABETES. International Journal of Probiotics and Prebiotics, 2012, 7, 135-144.	0.1	17
196	Enterovirus Infection During Pregnancy is Not a Risk Factor for Celiac Disease in the Offspring. Journal of Pediatric Gastroenterology and Nutrition, 2002, 35, 649-652.	1.8	16
197	Collecting highâ€quality pancreatic tissue for experimental study from organ donors with signs of βâ€cell autoimmunity. Diabetes/Metabolism Research and Reviews, 2010, 26, 585-592.	4.0	16
198	Evaluation of immunohistochemistry and in situ hybridization methods for the detection of enteroviruses using infected cell culture samples. Journal of Clinical Virology, 2010, 47, 224-228.	3.1	16

#	Article	IF	CITATIONS
199	Human parechovirus and the risk of type 1 diabetes. Journal of Medical Virology, 2013, 85, 1619-1623.	5.0	16
200	Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology. Journal of Clinical Virology, 2015, 69, 165-171.	3.1	16
201	Land Cover of Early-Life Environment Modulates the Risk of Type 1 Diabetes. Diabetes Care, 2021, 44, 1506-1514.	8.6	16
202	Evaluation of infectious etiology in subacute thyroiditis – lack of association with coxsackievirus infection. Apmis, 1998, 106, 500-504.	2.0	15
203	Natural Development of Antibodies against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis Protein Antigens during the First 13 Years of Life. Vaccine Journal, 2016, 23, 878-883.	3.1	15
204	Antibiotic resistance in pathogens causing acute otitis media in Finnish children. International Journal of Pediatric Otorhinolaryngology, 2016, 85, 91-94.	1.0	15
205	Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Research, 2019, 171, 104595.	4.1	15
206	Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere, 2021, 265, 128965.	8.2	15
207	Co-occurrence of allergic sensitization and type 1 diabetes. Annals of Medicine, 2010, 42, 352-359.	3.8	14
208	High prevalence of selected viruses and parasites and their predictors in Malawian children. Epidemiology and Infection, 2019, 147, e90.	2.1	14
209	Enterovirus antibodies in relation to islet cell antibodies in two populations with high and low incidence of type 1 diabetes. Diabetes Care, 1999, 22, 2086-2088.	8.6	13
210	Time Trends in Allergic Sensitisation and <i>Helicobacter pylori</i> Prevalence in Finnish Pregnant Women. International Archives of Allergy and Immunology, 2009, 150, 83-88.	2.1	13
211	New Coxsackievirus 2Apro and 3Cpro protease antibodies for virus detection and discovery of pathogenic mechanisms. Journal of Virological Methods, 2018, 255, 29-37.	2.1	13
212	Early childhood CMV infection may decelerate the progression to clinical type 1 diabetes. Pediatric Diabetes, 2019, 20, 73-77.	2.9	13
213	Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Reply to Hansson SF, Korsgren S, Pontén F et al [letter]. Diabetologia, 2014, 57, 647-649.	6.3	12
214	Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes. Diabetologia, 2018, 61, 381-388.	6.3	12
215	Serum 25-Hydroxyvitamin D Concentrations at Birth in Children Screened for HLA-DQB1 Conferred Risk for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2277-2285.	3.6	12
216	Presence of <i>Giardia lamblia</i> in stools of six―to 18â€month old asymptomatic Malawians is associated with children's growth failure. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1833-1840.	1.5	12

#	Article	IF	CITATIONS
217	Soluble adhesion molecules in young children with signs of β-cell autoimmunity—prospective follow-up from birth. Diabetes/Metabolism Research and Reviews, 2006, 22, 176-183.	4.0	11
218	Diagnostic Methods for and Clinical Pictures of Polyomavirus Primary Infections in Children, Finland. Emerging Infectious Diseases, 2014, 20, 689-692.	4.3	11
219	Immunological Changes and Increased Expression of Myxovirus Resistance Protein A in Thyroid Tissue of Patients with Recent Onset and Untreated Graves' Disease. Thyroid, 2014, 24, 537-544.	4.5	11
220	Earlyâ€ l ife exposure to common virus infections did not differ between coeliac disease patients and controls. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1709-1716.	1.5	11
221	Genetic Adaptation of Coxsackievirus B1 during Persistent Infection in Pancreatic Cells. Microorganisms, 2020, 8, 1790.	3.6	11
222	Interaction between <i>CD14</i> â^`159C>T polymorphism and <i>Helicobacter pylori</i> is associated with serum total immunoglobulin E. Clinical and Experimental Allergy, 2008, 38, 1929-1934.	2.9	10
223	Impact of Intranasal Insulin on Insulin Antibody Affinity and Isotypes in Young Children With HLA-Conferred Susceptibility to Type 1 Diabetes. Diabetes Care, 2011, 34, 1383-1388.	8.6	10
224	Serum fatty acids and risk of developing islet autoimmunity: A nested <scp>case–control</scp> study within the <scp>TRIGR</scp> birth cohort. Pediatric Diabetes, 2021, 22, 577-585.	2.9	10
225	Eradication of persistent coxsackievirus B infection from a pancreatic cell line with clinically used antiviral drugs. Journal of Clinical Virology, 2020, 128, 104334.	3.1	10
226	Enterovirus infections in young infants: Are children still protected by maternal antibodies?. Hum Vaccin, 2011, 7, 966-971.	2.4	9
227	Enterovirus infections in early childhood and the risk of atopic disease - a nested case-control study. Clinical and Experimental Allergy, 2012, 43, n/a-n/a.	2.9	9
228	Role of enterovirus infections in IgE sensitization. Journal of Medical Virology, 2012, 84, 268-271.	5.0	9
229	High-Throughput Multiplex Quantitative Polymerase Chain Reaction Method for Giardia lamblia and Cryptosporidium Species Detection in Stool Samples. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1222-1226.	1.4	9
230	Human parechovirus as a minor cause of acute otitis media in children. Journal of Clinical Virology, 2015, 62, 106-109.	3.1	9
231	The association between stressful life events and respiratory infections during the first 4Âyears of life: <scp>The Environmental Determinants of Diabetes in the Young</scp> study. Stress and Health, 2019, 35, 289-303.	2.6	9
232	Investigation of CTLA-4-318C/T gene polymorphism in cases with type 1 diabetes of Azerbaijan, Northwest Iran. Immunology Letters, 2015, 166, 134-139.	2.5	8
233	A preclinical assessment to repurpose drugs to target type 1 diabetesâ€associated type B coxsackieviruses. Diabetic Medicine, 2020, 37, 1849-1853.	2.3	8
234	Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms, 2020, 8, 1287.	3.6	8

#	Article	IF	CITATIONS
235	Defective HLA class II expression in monocytes of type 1 diabetic patients. Apmis, 1993, 101, 395-402.	2.0	7
236	Human enterovirus and rhinovirus infections are associated with otitis media in a prospective birth cohort study. Journal of Clinical Virology, 2016, 85, 1-6.	3.1	7
237	Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary?. Diabetologia, 2017, 60, 753-755.	6.3	7
238	Higher parental occupational social contact is associated with a reduced risk of incident pediatric type 1 diabetes: Mediation through molecular enteroviral indices. PLoS ONE, 2018, 13, e0193992.	2.5	7
239	No Association Between Ljungan Virus Seropositivity and the Beta-cell Damaging Process in the Finnish Type 1 Diabetes Prediction and Prevention Study Cohort. Pediatric Infectious Disease Journal, 2019, 38, 314-316.	2.0	7
240	Early childhood infections and the use of antibiotics and antipyreticâ€analgesics in Finland, Estonia and Russian Karelia. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 2075-2082.	1.5	7
241	Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses, 2020, 12, 78.	3.3	7
242	Infections and systemic inflammation are associated with lower plasma concentration of insulin-like growth factor I among Malawian children. American Journal of Clinical Nutrition, 2021, 113, 380-390.	4.7	7
243	Presence of Human Enteric Viruses in the Stools of Healthy Malawian 6â€Monthâ€Old Infants. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58, 502-504.	1.8	6
244	Rhinoviruses in infancy and risk of immunoglobulin E sensitization. Journal of Medical Virology, 2019, 91, 1470-1478.	5.0	6
245	Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland. International Journal of Environmental Research and Public Health, 2021, 18, 3742.	2.6	6
246	Effect of inactivated natureâ€derived microbial composition on mouse immune system. Immunity, Inflammation and Disease, 2022, 10, .	2.7	6
247	Live attenuated enterovirus vaccine (OPV) is not associated with islet autoimmunity in children with genetic susceptibility to type 1 diabetes: prospective cohort study. Diabetologia, 2018, 61, 203-209.	6.3	5
248	Differential Detection of Encapsidated versus Unencapsidated Enterovirus RNA in Samples Containing Pancreatic Enzymes—Relevance for Diabetes Studies. Viruses, 2020, 12, 747.	3.3	5
249	Multiplexed High-Throughput Serological Assay for Human Enteroviruses. Microorganisms, 2020, 8, 963.	3.6	5
250	Association of Picornavirus Infections With Acute Otitis Media in a Prospective Birth Cohort Study. Journal of Infectious Diseases, 2020, 222, 324-332.	4.0	5
251	Enhancing and neutralizing antiâ€coxsackievirus activities in serum samples from patients prior to development of type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2020, 36, e3305.	4.0	5
252	Childhood Height Growth Rate Association With the Risk of Islet Autoimmunity and Development of Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1520-1528.	3.6	5

#	Article	IF	CITATIONS
253	Sources of dietary gluten in the first 2 years of life and associations with celiac disease autoimmunity and celiac disease in Swedish genetically predisposed children: The Environmental Determinants of Diabetes in the Young (TEDDY) study. American Journal of Clinical Nutrition, 2022, 116, 394-403.	4.7	5
254	Epitopes recognized by CBV4 responding T cells: effect of type 1 diabetes and associated HLA-DR-DQ haplotypes. Virology, 2004, 319, 27-35.	2.4	4
255	A novel approach to the investigation of potential precipitating factors in type 1 diabetes. Pediatric Diabetes, 2006, 7, 143-145.	2.9	4
256	Amplifying control RNA for RT-PCR applications by nucleic acid sequence based amplification (NASBA). Journal of Virological Methods, 2006, 132, 222-226.	2.1	4
257	First trimester enterovirus IgM and beta cell autoantibodies in mothers to children affected by type 1 diabetes autoimmunity before 7 years of age. Journal of Reproductive Immunology, 2018, 127, 1-6.	1.9	4
258	Enterovirus infection during pregnancy is inversely associated with atopic disease in the offspring. Clinical and Experimental Allergy, 2018, 48, 1698-1704.	2.9	4
259	Large enteroviral vaccination studies to prevent type 1 diabetes should be well founded and rely on scientific evidence. Reply to Skog O, Klingel K, Roivainen M et al [letter]. Diabetologia, 2019, 62, 1100-1103.	6.3	4
260	Detection of Viral â^'RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms, 2020, 8, 1928.	3.6	4
261	Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia, 2022, 65, 1534-1540.	6.3	4
262	Enteroviruses and the risk of MS in the Finnish Twin Cohort. European Journal of Neurology, 2005, 12, 707-709.	3.3	3
263	Time-Resolved Fluorescence Imaging of Islet Cell Autoantibodies. Annals of the New York Academy of Sciences, 2006, 1079, 226-228.	3.8	3
264	The association between prior infection with five serotypes of Coxsackievirus B and incident type 2 diabetes mellitus in the EPIC-Norfolk study. Diabetologia, 2012, 55, 967-970.	6.3	3
265	Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. IScience, 2022, 25, 103653.	4.1	3
266	Primary Site of Coxsackievirus B Replication in the Small Intestines: No Proof of Peyer's Patches Involvement. Microorganisms, 2021, 9, 2600.	3.6	3
267	Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Frontiers in Immunology, 2020, 11, 567046.	4.8	2
268	Frailty modeling under a selective sampling protocol: anÂapplication to type 1 diabetes related autoantibodies. Statistics in Medicine, 2021, 40, 6410-6420.	1.6	2
269	Diagnosis of enterovirus and rhinovirus infections by RTâ€PCR and timeâ€resolved fluorometry with lanthanide chelate labeled probes. Journal of Medical Virology, 1999, 59, 378-384.	5.0	2
270	Enterovirus infections and type 1 diabetes. Annals of Medicine, 2002, 34, 138-147.	3.8	2

#	Article	IF	CITATIONS
271	Exposomic determinants of immune-mediated diseases. Environmental Epidemiology, 2022, 6, e212.	3.0	2
272	Viral infections and atopy in Brazil. Journal of Allergy and Clinical Immunology, 2012, 129, 1689.	2.9	1
273	Faecal regenerating 1B protein concentration is not associated with child growth in rural Malawi. Journal of Paediatrics and Child Health, 2021, 57, 388-394.	0.8	1
274	Enterovirus infections and enterovirus specific T-cell responses in infancy. , 1998, 54, 226.		1
275	Environmental Determinants. , 2008, , 63-84.		1
276	Is alcoholic pancreatitis associated with enteroviral infection?. World Journal of Gastroenterology, 2013, 19, 3819.	3.3	1
277	Type 1 Diabetes in Children With Genetic Risk May Be Predicted Very Early With a Blood miRNA. Diabetes Care, 2022, , .	8.6	1
278	Enterovirus Immunity and the "Hygiene Hypothesis― , 2013, , 129-141.		0
279	Viruses as Major Environmental Factors in the Induction of Diabetes. , 2013, , 349-355.		0
280	Association of different enteroviruses with atopy and allergic diseases in early childhood. Pediatric Allergy and Immunology, 2021, 32, 1629-1636.	2.6	0
281	Pancreas Whole Tissue Transcriptomics Highlights the Role of the Exocrine Pancreas in Patients With Recently Diagnosed Type 1 Diabetes. Frontiers in Endocrinology, 2022, 13, 861985.	3.5	0
282	Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity—The TRIGR Nested Case–Control Study. Frontiers in Immunology, 2022, 13, .	4.8	0