Ya-Ping Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357835/publications.pdf

Version: 2024-02-01

100	2,062	24	276875 41 g-index
papers	citations	h-index	
102	102	102	1558
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced catalytic activity of recombinant transaminase by molecular modification to improve L-phosphinothricin production. Journal of Biotechnology, 2022, 343, 7-14.	3.8	4
2	Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant. Bioresource Technology, 2022, 347, 126423.	9.6	42
3	Community scale in-situ rapid biological reduction and resource recovery of food waste. Bioresource Technology, 2022, 346, 126603.	9.6	4
4	Bacterial dynamics and functions driven by bulking agents to enhance organic degradation in food waste in-situ rapid biological reduction (IRBR). Bioprocess and Biosystems Engineering, 2022, 45, 689-700.	3.4	1
5	Engineering laboratory/factory-specific phage-resistant strains of Escherichia coli by mutagenesis and screening. World Journal of Microbiology and Biotechnology, 2022, 38, 51.	3.6	1
6	Expression of l-phosphinothricin synthesis enzymes in Pichia pastoris for synthesis of l-phosphinothricin. Biotechnology Letters, 2022, , $1.$	2.2	3
7	Development of an NAD(H)â€Driven Biocatalytic System for Asymmetric Synthesis of Chiral Amino Acids. Advanced Synthesis and Catalysis, 2022, 364, 1450-1459.	4.3	13
8	Potential of the Signal Peptide Derived from the <i>PAS_chr3_0030</i> Gene Product for Secretory Expression of Valuable Enzymes in <i>Pichia pastoris</i> Applied and Environmental Microbiology, 2022, 88, e0029622.	3.1	4
9	A light-controlled biocatalytic system for precise regulation of enzymatic decarboxylation. Catalysis Science and Technology, 2022, 12, 3421-3425.	4.1	3
10	Preparation of cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochemical Engineering Journal, 2022, , 108468.	3.6	2
11	Engineering of a nitrilase through consensus sequence analysis and conserved site substitution to improve its thermostability and activity. Biochemical Engineering Journal, 2022, 184, 108475.	3.6	6
12	An efficient route towards R-2-phenoxypropionic acid synthesis for biotransformative production of R-2-(4-hydroxyphenoxy)propionic acid. Chinese Journal of Chemical Engineering, 2021, 32, 315-323.	3.5	1
13	Enzyme cascade for biocatalytic deracemization of D,L-phosphinothricin. Journal of Biotechnology, 2021, 325, 372-379.	3.8	18
14	Heterologous expression and biochemical characterization of a thermostable endo- $\hat{1}^2$ -1,4-glucanase from Colletotrichum orchidophilum. Bioprocess and Biosystems Engineering, 2021, 44, 67-79.	3.4	10
15	Development of a biocatalytic cascade for synthesis of 2-oxo-4-(hydroxymethylphosphinyl) butyric acid in one pot. Biocatalysis and Biotransformation, 2021, 39, 190-197.	2.0	9
16	Efficient bio-degradation of food waste through improving the microbial community compositions by newly isolated Bacillus strains. Bioresource Technology, 2021, 321, 124451.	9.6	26
17	A integrated process for nitrilase-catalyzed asymmetric hydrolysis and easy biocatalyst recycling by introducing biocompatible biphasic system. Bioresource Technology, 2021, 320, 124392.	9.6	9
18	Simultaneous Directed Evolution of Coupled Enzymes for Efficient Asymmetric Synthesis of <scp>l</scp> -Phosphinothricin. Applied and Environmental Microbiology, 2021, 87, .	3.1	7

#	Article	IF	Citations
19	A Singleâ€Transaminaseâ€Catalyzed Biocatalytic Cascade for Efficient Asymmetric Synthesis of <scp>I</scp> â€Phosphinothricin. ChemBioChem, 2021, 22, 345-348.	2.6	11
20	Development of a Simple and Sensitive Pre-column Derivatization HPLC Method for the Quantitative Analysis of Miglitol Intermediates. Chromatographia, 2021, 84, 347-358.	1.3	2
21	Development of a Combination Fermentation Strategy to Simultaneously Increase Biomass and Enzyme Activity of d-amino Acid Oxidase Expressed in Escherichia coli. Applied Biochemistry and Biotechnology, 2021, 193, 2029-2042.	2.9	4
22	Identification of a novel promoter for driving antibiotic-resistant genes to reduce the metabolic burden during protein expression and effectively select multiple integrations in Pichia Pastoris. Applied Microbiology and Biotechnology, 2021, 105, 3211-3223.	3.6	10
23	Hydrogenation involved in the chemical–biological synthesis of miglitol: effect of biological impurities on catalytic activity and catalyst reuse. Journal of Chemical Technology and Biotechnology, 2021, 96, 3043.	3.2	0
24	Fed-in-situ biological reduction treatment of food waste via high-temperature-resistant oil degrading microbial consortium. Bioresource Technology, 2021, 340, 125635.	9.6	21
25	Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags. Biochemical Engineering Journal, 2021, 176, 108207.	3.6	3
26	Biological synthesis of nicotinamide mononucleotide. Biotechnology Letters, 2021, 43, 2199-2208.	2.2	16
27	Biosynthesis of l-phosphinothricin with enzymes from chromosomal integrated expression in E. coli. 3 Biotech, 2021, 11, 477.	2.2	1
28	Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite. International Journal of Biological Macromolecules, 2021, 193, 1362-1370.	7.5	3
29	Efficient separation of l-phosphinothricin from enzymatic reaction solution using cation-exchange resin. Separation Science and Technology, 2020, 55, 779-787.	2.5	4
30	Recent advances in the improvement of enzyme thermostability by structure modification. Critical Reviews in Biotechnology, 2020, 40, 83-98.	9.0	145
31	Efficient synthesis of L-phosphinothricin using a novel aminoacylase mined from Stenotrophomonas maltophilia. Enzyme and Microbial Technology, 2020, 135, 109493.	3.2	18
32	Light-driven deracemization of phosphinothricin by engineered fatty acid photodecarboxylase on a gram scale. Green Chemistry, 2020, 22, 6815-6818.	9.0	28
33	Production of (<i>R</i>)-2-(4-hydroxyphenoxy) propionic acid by <i>Beauveria bassiana</i> ZJB16007 in solid state fermentation using rice bran. Preparative Biochemistry and Biotechnology, 2020, 50, 781-787.	1.9	2
34	Upscale production of (R)-mandelic acid with a stereospecific nitrilase in an aqueous system. Bioprocess and Biosystems Engineering, 2020, 43, 1299-1307.	3.4	10
35	Screening of Fungi Isolates for C-4 Hydroxylation of R-2-Phenoxypropionic Acid Based on a Novel 96-Well Microplate Assay Method. Applied Biochemistry and Biotechnology, 2020, 192, 42-56.	2.9	1
36	Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination. Journal of Biotechnology, 2020, 312, 35-43.	3.8	25

#	Article	IF	CITATIONS
37	Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1. Applied Microbiology and Biotechnology, 2020, 104, 2489-2500.	3.6	14
38	Covalent immobilization of recombinant Citrobacter koseri transaminase onto epoxy resins for consecutive asymmetric synthesis of L-phosphinothricin. Bioprocess and Biosystems Engineering, 2020, 43, 1599-1607.	3.4	16
39	Enzyme engineering strategies to confer thermostability. , 2020, , 67-89.		2
40	Enhanced (R)-2-(4-Hydroxyphenoxy)Propionic Acid Production by Beauveria bassiana: Optimization of Culture Medium and H2O2 Supplement Under Static Cultivation. Journal of Microbiology and Biotechnology, 2020, 30, 1252-1260.	2.1	0
41	Asymmetric biosynthesis of L-phosphinothricin by a novel transaminase from Pseudomonas fluorescens ZJB09-108. Process Biochemistry, 2019, 85, 60-67.	3.7	25
42	Immobilization of Enzymes in/on Membranes and their Applications. Advanced Synthesis and Catalysis, 2019, 361, 5500-5515.	4.3	69
43	Asymmetric synthesis of l-phosphinothricin using thermostable alpha-transaminase mined from Citrobacter koseri. Journal of Biotechnology, 2019, 302, 10-17.	3.8	27
44	A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis. Bioprocess and Biosystems Engineering, 2019, 42, 1573-1582.	3.4	4
45	Genetic Engineering Approaches Used to Increase Lipid Production and Alter Lipid Profile in Microbes. Methods in Molecular Biology, 2019, 1995, 141-150.	0.9	2
46	Efficient racemization of Nâ€phenylacetylâ€Dâ€glufosinate for Lâ€glufosinate production. Chirality, 2019, 31, 513-521.	2.6	9
47	A rapid throughput assay for screening (R)-2-(4-hydroxyphenoxy)propionic acid producing microbes. Journal of Microbiological Methods, 2019, 158, 44-51.	1.6	7
48	Engineering of a keto acid reductase through reconstructing the substrate binding pocket to improve its activity. Catalysis Science and Technology, 2019, 9, 1961-1969.	4.1	6
49	Separation and purification of l-methionine from E. coli fermentation broth by macroporous resin chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1110-1111, 108-115.	2.3	33
50	Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile. International Journal of Biological Macromolecules, 2019, 130, 117-124.	7.5	19
51	Improvement of R â€2â€(4â€hydroxyphenoxy) propionic acid biosynthesis of Beauveria bassiana by combined mutagenesis. Biotechnology and Applied Biochemistry, 2019, 67, 343-353.	3.1	2
52	Highly efficient conversion of 1-cyanocycloalkaneacetonitrile using a "super nitrilase mutant― Bioprocess and Biosystems Engineering, 2019, 42, 455-463.	3.4	14
53	Optimization of extraction process for efficient imino acids recovery and purification from low-value sea cucumber. Food Science and Technology, 2019, 39, 543-550.	1.7	1
54	Engineering the residues on "A―surface and C-terminal region to improve thermostability of nitrilase. Enzyme and Microbial Technology, 2018, 113, 52-58.	3.2	32

#	Article	IF	CITATIONS
55	Highly Efficient Deracemization of Racemic 2-Hydroxy Acids in a Three-Enzyme Co-Expression System Using a Novel Ketoacid Reductase. Applied Biochemistry and Biotechnology, 2018, 186, 563-575.	2.9	1
56	Enzymatic asymmetric synthesis of chiral amino acids. Chemical Society Reviews, 2018, 47, 1516-1561.	38.1	269
57	Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochemistry, 2018, 65, 93-99.	3.7	20
58	Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine. Applied Biochemistry and Biotechnology, 2018, 184, 1024-1035.	2.9	16
59	Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis. Applied Microbiology and Biotechnology, 2018, 102, 733-742.	3.6	23
60	Distribution and Chemoenzymatic Removal of Heavy Metals in Sea Cucumber <i>Acaudina leucoprocta</i> . Food Science and Technology Research, 2018, 24, 223-229.	0.6	10
61	Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. International Journal of Biological Macromolecules, 2018, 116, 563-571.	7.5	38
62	Separation and purification of Lâ€proline and Lâ€hydroxyproline from the hydrolysate of sea cucumber <i>Acaudina leucoprota</i>). Journal of Chemical Technology and Biotechnology, 2018, 93, 3543-3552.	3.2	3
63	Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresource Technology, 2017, 229, 26-32.	9.6	71
64	Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology, 2017, 101, 987-1001.	3.6	134
65	Directed Evolution of Carbonyl Reductase from <i>Rhodosporidium toruloides</i> and Its Application in Stereoselective Synthesis of <i>tert</i> Butyl (3 <i>R</i> ,5 <i>S</i>)-6-Chloro-3,5-dihydroxyhexanoate. Journal of Agricultural and Food Chemistry, 2017, 65, 3721-3729.	5.2	45
66	Largeâ€scale synthesis of tert―butyl (3R,5S)â€6â€chloroâ€3,5â€dihydroxyhexanoate by a stereoselective carb reductase with high substrate concentration and product yield. Biotechnology Progress, 2017, 33, 612-620.	oonyl 2.6	19
67	Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochemical Engineering Journal, 2017, 125, 190-195.	3.6	11
68	Improving catalytic performance of an arylacetonitrilase by semirational engineering. Bioprocess and Biosystems Engineering, 2017, 40, 1565-1572.	3.4	11
69	Extraction and Characterization of Pepsin Soluble Collagen from the Body Wall of Sea Cucumber <i>Acaudina leucoprocta</i>). Journal of Aquatic Food Product Technology, 2017, 26, 502-515.	1.4	19
70	Enhancement of Nucleoside Production in <i> Hirsutella sinensis</i> Based on Biosynthetic Pathway Analysis. BioMed Research International, 2017, 2017, 1-11.	1.9	7
71	<i>R</i> -mandelic acid production with immobilized recombinant <i>Escherichia coli</i> cells in a recirculating packed bed reactor. Biocatalysis and Biotransformation, 2016, 34, 205-211.	2.0	5
72	Enantioselective cascade biocatalysis for deracemization of 2-hydroxy acids using a three-enzyme system. Microbial Cell Factories, 2016, 15, 162.	4.0	14

#	Article	IF	CITATIONS
73	Nitrilaseâ€catalyzed conversion of (<i>R,S</i>)â€mandelonitrile by immobilized recombinant <i>Escherichia coli</i> cells harboring nitrilase. Biotechnology and Applied Biochemistry, 2016, 63, 479-489.	3.1	18
74	High-throughput screening methods for nitrilases. Applied Microbiology and Biotechnology, 2016, 100, 3421-3432.	3.6	23
75	Biosynthetic Pathway Analysis for Improving the Cordycepin and Cordycepic Acid Production in Hirsutella sinensis. Applied Biochemistry and Biotechnology, 2016, 179, 633-649.	2.9	40
76	Efficient recovery of 1-cyanocyclohexaneacetic acid by ion-exchange process. Separation Science and Technology, 2015, , 150804134545002.	2.5	1
77	Efficient two-step chemo-enzymatic synthesis of all-trans-retinyl palmitate with high substrate concentration and product yield. Applied Microbiology and Biotechnology, 2015, 99, 8891-8902.	3.6	15
78	Chemoenzymatic synthesis of gabapentin by combining nitrilase-mediated hydrolysis with hydrogenation over Raney-nickel. Catalysis Communications, 2015, 66, 121-125.	3.3	25
79	Design of Nitrilases with Superior Activity and Enantioselectivity towards Sterically Hindered Nitrile by Protein Engineering. Advanced Synthesis and Catalysis, 2015, 357, 1741-1750.	4.3	34
80	Activity improvement of a regioselective nitrilase from Acidovorax facilis and its application in the production of 1-(cyanocyclohexyl) acetic acid. Process Biochemistry, 2014, 49, 2141-2148.	3.7	24
81	Efficient Synthesis of Non-Natural <scp>l</scp> -2-Aryl-Amino Acids by a Chemoenzymatic Route. ACS Catalysis, 2014, 4, 3051-3058.	11.2	19
82	Improvement of <i>Alcaligenes faecalis</i> Nitrilase by Gene Site Saturation Mutagenesis and Its Application in Stereospecific Biosynthesis of (<i>R</i>)-(\hat{a})-Mandelic Acid. Journal of Agricultural and Food Chemistry, 2014, 62, 4685-4694.	5.2	55
83	One-pot, single-step deracemization of 2-hydroxyacids by tandem biocatalytic oxidation and reduction. Chemical Communications, 2013, 49, 10706.	4.1	30
84	Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125. Journal of Biotechnology, 2013, 167, 271-278.	3.8	5
85	Highly enantioselective oxidation of α-hydroxyacids bearing a substituent with an aryl group: Co-production of optically active α-hydroxyacids and α-ketoacids. Bioresource Technology, 2013, 132, 391-394.	9.6	6
86	A Novel Integrated Bioprocess for Efficient Production of (<i>R</i>)-(â^') <i>-</i> Mandelic Acid with Immobilized <i>Alcaligenes faecalis</i> ZJUTB10. Organic Process Research and Development, 2013, 17, 213-220.	2.7	37
87	Efficient production of S-(+)-2-chlorophenylglycine by immobilized penicillin G acylase in a recirculating packed bed reactor. Biochemical Engineering Journal, 2013, 74, 88-94.	3.6	26
88	Enhanced Production of Acarbose and Concurrently Reduced Formation of Impurity C by Addition of Validamine in Fermentation of <i>Actinoplanes utahensis </i> 2013, 2013, 1-9.	1.9	8
89	Screening and Improving the Recombinant Nitrilases and Application in Biotransformation of Iminodiacetic Acid. PLoS ONE, 2013, 8, e67197.	2.5	25
90	Isolation of enantioselective α-hydroxyacid dehydrogenases based on a high-throughput screening method. Bioprocess and Biosystems Engineering, 2012, 35, 1515-1522.	3.4	11

#	Article	IF	CITATIONS
91	Isolation of brefeldin A from Eupenicillium brefeldianum broth using macroporous resin adsorption chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 895-896, 146-153.	2.3	30
92	Gene Cloning, Expression, and Characterization of a Nitrilase from <i>Alcaligenes faecalis</i> ZJUTB10. Journal of Agricultural and Food Chemistry, 2011, 59, 11560-11570.	5.2	43
93	Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile for production of (R)-(â^')-mandelic acid by a newly isolated mutant strain. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 337-345.	3.0	41
94	Efficient separation of (⟨i⟩R⟨ i⟩)â€(â€)â€mandelic acid biosynthesized from (⟨i⟩R⟨ i⟩,⟨i⟩S⟨ i⟩)â€mandelonitrile by nitrilase using ionâ€exchange process. Journal of Chemical Technology and Biotechnology, 2011, 86, 391-397.	3.2	14
95	Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(\hat{a} °)-mandelic acid with in situ production removal by addition of resin. Biochemical Engineering Journal, 2010, 53, 143-149.	3.6	31
96	Optimization of fermentation conditions for production of xylanase by a newly isolated strain, Penicillium thiersii ZH-19. World Journal of Microbiology and Biotechnology, 2009, 25, 721-725.	3.6	15
97	Quantitative Determination of Valienamine and Validamine by Thin-Layer Chromatography. Journal of Chromatographic Science, 2007, 45, 87-90.	1.4	4
98	Enhanced production of valienamine by Stenotrophomonas maltrophilia with fed-batch culture in a stirred tank bioreactor. Process Biochemistry, 2007, 42, 1033-1038.	3.7	6
99	SEPARATION AND PREPARATION OF VALIDAMYCIN A AND VALIDAMYCIN B USING ANION-EXCHANGE RESIN. Chemical Engineering Communications, 2006, 193, 1581-1585.	2.6	3
100	Preparation of Trehalase Inhibitor Validoxylamine A by Biocatalyzed Hydrolysis of Validamycin A With Honeybee (<i>Apis cerana</i> Fabr.) Î ² -Glucosidase. Applied Biochemistry and Biotechnology, 2005, 127, 157-172.	2.9	8