Xuebing Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7357491/xuebing-wu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30	18,217	21	33
papers	citations	h-index	g-index
33	21,766 ext. citations	26.8	6.4
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
30	Transcriptional Pause Sites Delineate Stable Nucleosome-Associated Premature Polyadenylation Suppressed by U1 snRNP. <i>Molecular Cell</i> , 2018 , 69, 648-663.e7	17.6	65
29	Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. <i>Cell</i> , 2018 , 172, 979-992.e6	56.2	239
28	Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. <i>Nature Communications</i> , 2018 , 9, 2962	17.4	18
27	A genetic program mediates cold-warming response and promotes stress-induced phenoptosis in. <i>ELife</i> , 2018 , 7,	8.9	10
26	Combined effects of octreotide and cisplatin on the proliferation of side population cells from anaplastic thyroid cancer cell lines. <i>Oncology Letters</i> , 2018 , 16, 4033-4042	2.6	7
25	Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell, 2018, 175, 212-223.e	1 <i>]</i> 6.2	96
24	Widespread Influence of 3eEnd Structures on Mammalian mRNA Processing and Stability. <i>Cell</i> , 2017 , 169, 905-917.e11	56.2	69
23	kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences. <i>Nucleic Acids Research</i> , 2017 , 45, W534-W538	20.1	47
22	Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. <i>Cell</i> , 2016 , 166, 1147-1162.e15	56.2	159
21	Editing DNA Methylation in the Mammalian Genome. Cell, 2016, 167, 233-247.e17	56.2	690
20	In vivo genome editing using Staphylococcus aureus Cas9. <i>Nature</i> , 2015 , 520, 186-91	50.4	1700
19	Characterizing Polyadenylated uaRNAs Suggests a Potential Role for Pabpn1. <i>FASEB Journal</i> , 2015 , 29, 562.25	0.9	
18	Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. <i>Nature Biotechnology</i> , 2014 , 32, 670-6	44.5	666
17	Global microRNA depletion suppresses tumor angiogenesis. <i>Genes and Development</i> , 2014 , 28, 1054-67	12.6	52
16	Target specificity of the CRISPR-Cas9 system. <i>Quantitative Biology</i> , 2014 , 2, 59-70	3.9	184
15	DNA targeting specificity of RNA-guided Cas9 nucleases. <i>Nature Biotechnology</i> , 2013 , 31, 827-32	44.5	3056
14	Single-molecule mRNA detection and counting in mammalian tissue. <i>Nature Protocols</i> , 2013 , 8, 1743-58	18.8	148

LIST OF PUBLICATIONS

13	Divergent transcription: a driving force for new gene origination?. <i>Cell</i> , 2013 , 155, 990-6	56.2	118
12	Integrating human omics data to prioritize candidate genes. <i>BMC Medical Genomics</i> , 2013 , 6, 57	3.7	21
11	Multiplex genome engineering using CRISPR/Cas systems. <i>Science</i> , 2013 , 339, 819-23	33.3	9746
10	Promoter directionality is controlled by U1 snRNP and polyadenylation signals. <i>Nature</i> , 2013 , 499, 360-	3 50.4	294
9	Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology Series, 2010, 191-212		4
8	Accelerating Genome-Wide Association Studies Using CUDA Compatible Graphics Processing Units 2009 ,		5
7	Align human interactome with phenome to identify causative genes and networks underlying disease families. <i>Bioinformatics</i> , 2009 , 25, 98-104	7.2	80
6	A random forest approach to the detection of epistatic interactions in case-control studies. <i>BMC Bioinformatics</i> , 2009 , 10 Suppl 1, S65	3.6	180
5	A Comparative Study of Ensemble Learning Approaches in the Classification of Breast Cancer Metastasis 2009 ,		11
4	Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. <i>PLoS Genetics</i> , 2009 , 5, e1000464	6	75
3	Network-based global inference of human disease genes. <i>Molecular Systems Biology</i> , 2008 , 4, 189	12.2	475
2	RNA-guided cell targeting with CRISPR/RfxCas13d collateral activity in human cells		1
1	kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences		1