
Dieter Scharnweber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioactive Materials, 2022, 8, 420-434.	15.6	15
2	Surface Functionalization of Poly(l-lactide-co-glycolide) Membranes with RGD-Grafted Poly(2-oxazoline) for Periodontal Tissue Engineering. Journal of Functional Biomaterials, 2022, 13, 4.	4.4	11
3	Sodium alendronate loaded poly(<scp>l</scp> -lactide- <i>co</i> -glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. International Journal of Energy Production and Management, 2021, 8, 293-302.	3.7	13
4	Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF ₁₆₅ Activity and Fine-Tune Endothelial Cell Response. ACS Applied Bio Materials, 2021, 4, 494-506.	4.6	9
5	Chemically modified glycosaminoglycan derivatives as building blocks for biomaterial coatings and hydrogels. Biological Chemistry, 2021, 402, 1385-1395.	2.5	10
6	Implant surface modifications and new development in surface coatings. , 2020, , 89-124.		2
7	The influence of different artificial extracellular matrix implant coatings on the regeneration of a critical size femur defect in rats. Materials Science and Engineering C, 2020, 116, 111157.	7.3	8
8	Strengthening of Titanium by Equal Channel Angular Pressing ―Impact on Oxide Layer Properties of Pure Titanium and Ti6Al4V. Advanced Materials Interfaces, 2020, 7, 2000552.	3.7	4
9	Success and side effects of different treatment options in the low current attack of bacterial biofilms on titanium implants. Bioelectrochemistry, 2020, 133, 107485.	4.6	12
10	Mono(2â€ethylhexyl) phthalate (MEHP) and mono(2â€ethylâ€5â€oxohexyl) phthalate (MEOHP) but not di(2â€ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferatorâ€activated receptor γ. Rapid Communications in Mass Spectrometry, 2019, 33, 75-85.	1.5	26
11	Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approaches. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1672-1684.	2.7	1
12	Hyaluronan/collagen hydrogel matrices containing high-sulfated hyaluronan microgels for regulating transforming growth factor-β1. Journal of Materials Science: Materials in Medicine, 2019, 30, 65.	3.6	13
13	Sulfated hyaluronan ontaining artificial extracellular matrices promote proliferation of keratinocytes and melanotic phenotype of melanocytes from the outer root sheath of hair follicles. Journal of Biomedical Materials Research - Part A, 2019, 107, 1640-1653.	4.0	7
14	Immobilization of Denosumab on Titanium Affects Osteoclastogenesis of Human Peripheral Blood Monocytes. International Journal of Molecular Sciences, 2019, 20, 1002.	4.1	4
15	Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomaterials Research, 2019, 23, 26.	6.9	32
16	Biomaterials in repairing rat femoral defects: In vivo insights from small animal positron emission tomography/computed tomography (PET/CT) studies. Clinical Hemorheology and Microcirculation, 2019, 73, 177-194.	1.7	8
17	Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A. Scientific Reports, 2019, 9, 18143.	3.3	28
18	Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomaterialia, 2019, 86, 135-147.	8.3	113

#	Article	IF	CITATIONS
19	Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2019, 97, 12-22.	7.3	11
20	Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response. Carbohydrate Polymers, 2018, 191, 53-64.	10.2	19
21	Utilizing DNA for functionalization of biomaterial surfaces. FEBS Letters, 2018, 592, 2181-2196.	2.8	10
22	Osteogenic nanostructured titanium surfaces with antibacterial properties under conditions that mimic the dynamic situation in the oral cavity. Biomaterials Science, 2018, 6, 1390-1402.	5.4	19
23	Nanofibrous artificial skin substitute composed of mPEG–PCL grafted gelatin/hyaluronan/chondroitin sulfate/sericin for 2nd degree burn care: in vitro and in vivo study. RSC Advances, 2018, 8, 16420-16432.	3.6	36
24	Sulfated Hyaluronan Alters Endothelial Cell Activationin Vitroby Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3. ACS Applied Materials & Interfaces, 2017, 9, 9539-9550.	8.0	23
25	Investigation of the mechanical and chemical characteristics of nanotubular and nano-pitted anodic films on grade 2 titanium dental implant materials. Materials Science and Engineering C, 2017, 78, 69-78.	7.3	24
26	Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2017, 23, 286-297.	2.1	17
27	Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application – The role of chondroitin sulfate and sulfated hyaluronan. Materials Science and Engineering C, 2017, 79, 15-22.	7.3	60
28	Sulfated Hyaluronan Derivatives Modulate TGF-β1:Receptor Complex Formation: Possible Consequences for TGF-β1 Signaling. Scientific Reports, 2017, 7, 1210.	3.3	30
29	Properties of composite oxide layers on the Ti13Nb13Zr alloy. Surface Engineering, 2017, 33, 841-848.	2.2	8
30	Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. Materials Science and Engineering C, 2017, 73, 310-318.	7.3	18
31	Hyaluronan/Collagen Hydrogels with Sulfated Hyaluronan for Improved Repair of Vascularized Tissue Tune the Binding of Proteins and Promote Endothelial Cell Growth. Macromolecular Bioscience, 2017, 17, 1700154.	4.1	26
32	Reciprocal influence of hMSCs/HaCaT cultivated on electrospun scaffolds. Journal of Materials Science: Materials in Medicine, 2017, 28, 128.	3.6	5
33	Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect — A pilot study in rats. Materials Science and Engineering C, 2017, 71, 84-92.	7.3	33
34	Macromol. Biosci. 11/2017. Macromolecular Bioscience, 2017, 17, .	4.1	0
35	Bone Morphogenetic Protein-2 Hybridized with Nano-Anchored Oligonucleotides on Titanium Implants Enhances Osteogenic Differentiation In Vivo. International Journal of Oral and Maxillofacial Implants, 2017, 32, e175-e182.	1.4	7
36	Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials, 2016, 96, 11-23.	11.4	55

#	Article	IF	CITATIONS
37	Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 – A possible regulatory role on extracellular matrix homeostasis. Acta Biomaterialia, 2016, 45, 143-154.	8.3	31
38	Sulfated Hyaluronan Alters the Interaction Profile of TIMP-3 with the Endocytic Receptor LRP-1 Clusters II and IV and Increases the Extracellular TIMP-3 Level of Human Bone Marrow Stromal Cells. Biomacromolecules, 2016, 17, 3252-3261.	5.4	20
39	Application of Lateral and Distance Spacers in an Oligonucleotide Based Immobilization System for Bioactive Molecules onto Titanium Implants. ACS Applied Materials & Interfaces, 2016, 8, 3755-3764.	8.0	7
40	Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: InÂvitro study. Biomaterials, 2016, 88, 83-96.	11.4	86
41	Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results. Materials Science and Engineering C, 2016, 59, 624-635.	7.3	45
42	Bone Formation in a Local Defect around Dental Implants Coated with Extracellular Matrix Components. Clinical Implant Dentistry and Related Research, 2015, 17, 742-757.	3.7	12
43	Functionalization of titanium implants using a modular system for binding and release of <scp>VEGF</scp> enhances boneâ€implant contact in a rodent model. Journal of Clinical Periodontology, 2015, 42, 302-310.	4.9	24
44	Biocomposite and Bioceramic Coatings and Materials. , 2015, , 445-470.		1
45	Collagenâ€lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2015, 103, 525-533.	4.0	22
46	Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. Biomaterials, 2015, 67, 335-345.	11.4	39
47	Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis. ACS Applied Materials & Interfaces, 2015, 7, 23787-23797.	8.0	42
48	Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. Journal of Materials Science: Materials in Medicine, 2015, 26, 232.	3.6	53
49	Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Interfaces, 2015, 7, 23015-23028.	8.0	78
50	A modular peptide-based immobilization system for ZrO 2 , TiZr and TiO 2 surfaces. Acta Biomaterialia, 2015, 12, 290-297.	8.3	6
51	Improved Anchorage of Ti6Al4V Orthopaedic Bone Implants through Oligonucleotide Mediated Immobilization of BMP-2 in Osteoporotic Rats. PLoS ONE, 2014, 9, e86151.	2.5	20
52	Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application. Beilstein Journal of Organic Chemistry, 2014, 10, 2765-2773.	2.2	16
53	Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: A pilot study in sheep. Journal of Biomaterials Applications, 2014, 28, 654-666.	2.4	25
54	Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 160-172.	3.4	15

#	Article	IF	CITATIONS
55	Sulfated Glycosaminoglycans Support Osteoblast Functions and Concurrently Suppress Osteoclasts. Journal of Cellular Biochemistry, 2014, 115, 1101-1111.	2.6	59
56	Glycosaminoglycans and their sulfate derivatives differentially regulate the viability and gene expression of osteocyte-like cell lines. Journal of Bioactive and Compatible Polymers, 2014, 29, 474-485.	2.1	11
57	Coating with artificial matrices from collagen and sulfated hyaluronan influences the osseointegration of dental implants. Journal of Materials Science: Materials in Medicine, 2014, 25, 247-258.	3.6	44
58	Impact of a functionalized olive oil extract on the uterus and the bone in a model of postmenopausal osteoporosis. European Journal of Nutrition, 2014, 53, 1073-1081.	3.9	31
59	Sulfated Glycosaminoglycans Exploit the Conformational Plasticity of Bone Morphogenetic Protein-2 (BMP-2) and Alter the Interaction Profile with Its Receptor. Biomacromolecules, 2014, 15, 3083-3092.	5.4	76
60	Investigation of the Peptide Adsorption on ZrO ₂ , TiZr, and TiO ₂ Surfaces as a Method for Surface Modification. ACS Applied Materials & Interfaces, 2014, 6, 7408-7416.	8.0	27
61	Increased bone remodelling around titanium implants coated with chondroitin sulfate in ovariectomized rats. Acta Biomaterialia, 2014, 10, 2855-2865.	8.3	29
62	Sulfated Hyaluronan Influences the Formation of Artificial Extracellular Matrices and the Adhesion of Osteogenic Cells. Macromolecular Bioscience, 2014, 14, 1783-1794.	4.1	19
63	The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy. Biomaterials, 2013, 34, 8075-8085.	11.4	40
64	Comparison of estrogenic responses in bone and uterus depending on the parity status in Lewis rats. Journal of Steroid Biochemistry and Molecular Biology, 2013, 133, 101-109.	2.5	9
65	The promotion of osteoclastogenesis by sulfated hyaluronan through interference with osteoprotegerin and receptor activator of NF-ήB ligand/osteoprotegerin complex formation. Biomaterials, 2013, 34, 7653-7661.	11.4	32
66	Progression of Osteogenic Cell Cultures Grown on Microtopographic Titanium Coated With Calcium Phosphate and Functionalized With a Type I Collagenâ€Derived Peptide. Journal of Periodontology, 2013, 84, 1199-1210.	3.4	16
67	Peptide linkers for the immobilization of bioactive molecules on biphasic calcium phosphate via a modular immobilization system. Acta Biomaterialia, 2013, 9, 4899-4905.	8.3	12
68	Artificial extracellular matrix composed of collagen I and highly sulfated hyaluronan interferes with TGFβ1 signaling and prevents TGFβ1-induced myofibroblast differentiation. Acta Biomaterialia, 2013, 9, 7775-7786.	8.3	49
69	Surface functionalization of biomaterials with tissue-inductive artificial extracellular matrices. BioNanoMaterials, 2013, 14, .	1.4	1
70	Physicochemical and cell biological characterization of PMMA bone cements modified with additives to increase bioactivity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 599-609.	3.4	24
71	The Role of Oxidative Stress in the Response of Endothelial Cells to Metals. Springer Series in Biomaterials Science and Engineering, 2013, , 65-88.	1.0	1
72	Functionalization of biomaterial surfaces using artificial extracellular matrices. Biomatter, 2012, 2, 132-141.	2.6	46

DIETER SCHARNWEBER

#	Article	IF	CITATIONS
73	Embroidered and surface coated polycaprolactone-co-lactide scaffolds. Biomatter, 2012, 2, 158-165.	2.6	27
74	Sulfated Glycosaminoglycan Building Blocks for the Design of Artificial Extracellular Matrices. ACS Symposium Series, 2012, , 315-328.	0.5	5
75	The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials, 2012, 33, 8418-8429.	11.4	73
76	Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs. Biomaterials, 2012, 33, 8975-8985.	11.4	70
77	Estimation of an early meaningful time point of bone parameter changes in application to an osteoporotic rat model with in vivo microcomputed tomography measurements. Laboratory Animals, 2012, 46, 237-244.	1.0	13
78	Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomaterialia, 2012, 8, 659-666.	8.3	81
79	Effect of oligonucleotide mediated immobilization of bone morphogenic proteins on titanium surfaces. Biomaterials, 2012, 33, 1315-1322.	11.4	33
80	Biological functionalization of dental implants with collagen and glycosaminoglycans—A comparative study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 331-341.	3.4	49
81	Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011, 32, 6692-6709.	11.4	1,114
82	Growth promoting substrates for human dermal fibroblasts provided by artificial extracellular matrices composed of collagen I and sulfated glycosaminoglycans. Biomaterials, 2011, 32, 8938-8946.	11.4	75
83	Osseointegration of Titanium Prostheses on the Stapes Footplate. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 161-171.	1.8	19
84	Glucuronic acid and phosphoserine act as mineralization mediators of collagen I based biomimetic substrates. Journal of Materials Science: Materials in Medicine, 2010, 21, 407-418.	3.6	7
85	Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. Journal of Materials Science: Materials in Medicine, 2010, 21, 2751-2763.	3.6	94
86	Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats. Journal of Biomedical Materials Research - Part A, 2010, 92A, 185-195.	4.0	40
87	Longâ€bone criticalâ€size defects treated with tissueâ€engineered polycaprolactoneâ€ <i>co</i> â€lactide scaffolds: A pilot study on rats. Journal of Biomedical Materials Research - Part A, 2010, 95A, 964-972.	4.0	26
88	The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials, 2010, 31, 2461-2469.	11.4	106
89	Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox. Journal of the Royal Society Interface, 2010, 7, S93-S105.	3.4	95
90	Hydrostatic Pressure Stimulation of Human Mesenchymal Stem Cells Seeded on Collagen-Based Artificial Extracellular Matrices. Journal of Biomechanical Engineering, 2010, 132, 021001.	1.3	28

DIETER SCHARNWEBER

#	Article	IF	CITATIONS
91	Embroidered and Surface Modified Polycaprolactone-Co-Lactide Scaffolds as Bone Substitute: In Vitro Characterization. Annals of Biomedical Engineering, 2009, 37, 2118-2128.	2.5	50
92	Increased bone formation around coated implants. Journal of Clinical Periodontology, 2009, 36, 698-704.	4.9	47
93	Immobilization of oligonucleotides on titanium based materials by partial incorporation in anodic oxide layers. Biomaterials, 2009, 30, 2774-2781.	11.4	29
94	Modifications of Hyaluronan Influence the Interaction with Human Bone Morphogenetic Protein-4 (hBMP-4). Biomacromolecules, 2009, 10, 3290-3297.	5.4	127
95	Oligonucleotideâ^'RGD Peptide Conjugates for Surface Modification of Titanium Implants and Improvement of Osteoblast Adhesion. Bioconjugate Chemistry, 2009, 20, 710-718.	3.6	44
96	Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors. Journal of Materials Science: Materials in Medicine, 2008, 19, 1043-1049.	3.6	67
97	Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 2008, 19, 1653-1660.	3.6	27
98	Influence of collagenâ€fibrilâ€based coatings containing decorin and biglycan on osteoblast behavior. Journal of Biomedical Materials Research - Part A, 2008, 84A, 805-816.	4.0	31
99	Suitability of differently designed matrixâ€based implant surface coatings: An animal study on bone formation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 516-524.	3.4	21
100	Cathepsin K deficiency partially inhibits, but does not prevent, bone destruction in human tumor necrosis factor–transgenic mice. Arthritis and Rheumatism, 2008, 58, 422-434.	6.7	33
101	Biomechanical comparison of different surface modifications for dental implants. International Journal of Oral and Maxillofacial Implants, 2008, 23, 1037-46.	1.4	80
102	Electron Transfer Kinetics at Oxide Films on Metallic Biomaterials. Journal of the Electrochemical Society, 2007, 154, C508.	2.9	37
103	Bio surface-engineering of titanium materials. BIOmaterialien: Offizielles Organ Der Deutschen Gesellschaft Fuer Biomaterialien, 2007, 8, .	0.1	2
104	Morphology of bony tissues and implants uncovered by high-resolution tomographic imaging. International Journal of Materials Research, 2007, 98, 613-621.	0.3	44
105	The effects of metal implants on inflammatory and healing processes. International Journal of Materials Research, 2007, 98, 622-629.	0.3	10
106	Interactions of Collagen Types I and II with Chondroitin Sulfates Aâ^'C and Their Effect on Osteoblast Adhesion. Biomacromolecules, 2007, 8, 1085-1092.	5.4	85
107	Influence of extracellular matrix coatings on implant stability and osseointegration: An animal study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 222-231.	3.4	51
108	In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. Journal of Orthopaedic Research, 2007, 25, 1052-1061.	2.3	58

DIETER SCHARNWEBER

#	Article	IF	CITATIONS
109	The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials, 2007, 28, 3263-3272.	11.4	83
110	The effect of electrochemical functionalization of Ti-alloy surfaces by aptamer-based capture molecules on cell adhesion. Biomaterials, 2007, 28, 468-474.	11.4	52
111	Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials, 2007, 28, 806-813.	11.4	79
112	Fibrillogenesis of Collagen Types I, II, and III with Small Leucine-Rich Proteoglycans Decorin and Biglycan. Biomacromolecules, 2006, 7, 2388-2393.	5.4	150
113	Mimicked Bioartificial Matrix Containing Chondroitin Sulphate on a Textile Scaffold of Poly(3-hydroxybutyrate) Alters the Differentiation of Adult Human Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 345-359.	4.6	93
114	3D analysis of bone formation around titanium implants using micro computed tomography (μCT). , 2006, , .		4
115	Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials, 2006, 27, 4059-4068.	11.4	108
116	Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 2006, 27, 5561-5571.	11.4	265
117	Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: Characterization and influence on osteoblastic cells. Journal of Biomedical Materials Research - Part A, 2006, 77A, 551-562.	4.0	96
118	Influence of modified extracellular matrices on TI6AL4V implants on binding and release of VEGF. Journal of Biomedical Materials Research - Part A, 2006, 79A, 882-894.	4.0	33
119	Biomimetic calcium phosphate composite coating of dental implants. International Journal of Oral and Maxillofacial Implants, 2006, 21, 738-46.	1.4	39
120	Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR $\hat{1}$ /4CT and histology. Biomaterials, 2005, 26, 3009-3019.	11.4	93
121	Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clinical Oral Implants Research, 2005, 16, 563-569.	4.5	125
122	Coating of titanium implants with typeâ€l collagen. Journal of Orthopaedic Research, 2004, 22, 1025-1034.	2.3	112
123	Mineralization behaviour of collagen type I immobilized on different substrates. Biomaterials, 2004, 25, 2371-2380.	11.4	52
124	Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix. Journal of Biomedical Materials Research Part B, 2003, 67A, 421-430.	3.1	40
125	Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. Journal of Biomedical Materials Research - Part A, 2003, 67A, 431-438.	4.0	65
126	New aspects in the histological examination of polyethylene wear particles in failed total joint replacements. Acta Histochemica, 2002, 104, 263-269.	1.8	41

#	Article	IF	CITATIONS
127	Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. Clinical Oral Implants Research, 2002, 13, 312-319.	4.5	148