
Josef Trögl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357478/publications.pdf Version: 2024-02-01

LOSEE TRöCL

#	Article	IF	CITATIONS
1	Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degradation and Development, 2022, 33, 358-367.	1.8	11
2	Miscanthus × giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy, 2022, 12, 771.	1.3	11
3	Response to Grygar (2020) comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus― Pidlisnyuk etÂal. (2019). Environmental pollution, 261: 113038. Environmental Pollution, 2021, 272, 115037.	3.7	1
4	Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors, 2021, 21, 565.	2.1	5
5	Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils. Applied Sciences (Switzerland), 2021, 11, 1866.	1.3	8
6	Enhanced Carbon Sequestration in Marginal Land Upon Shift towards Perennial C4Miscanthus × giganteus: A Case Study in North-Western Czechia. Agronomy, 2021, 11, 293.	1.3	13
7	Phytostabilization of a contaminated military site using <i>Miscanthus</i> and soil amendments. Journal of Environmental Quality, 2021, 50, 1220-1232.	1.0	16
8	Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicology and Environmental Safety, 2021, 224, 112630.	2.9	11
9	Evaluation of the Miscanthus <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e511" altimg="si21.svg"><mml:mo>×</mml:mo></mml:math> giganteus short term impacts on enhancing the quality of agricultural soils affected by single and/or multiple contaminants. Environmental Technology and Innovation. 2021. 24. 101890.	3.0	10
10	Plant priming changes physiological properties and lignin content in Miscanthus x giganteus. Industrial Crops and Products, 2021, 174, 114185.	2.5	7
11	Potential role of plant growth-promoting bacteria in Miscanthus x giganteus phytotechnology applied to the trace elements contaminated soils. International Biodeterioration and Biodegradation, 2020, 155, 105103.	1.9	17
12	Bioprospecting of a Novel Plant Growth-Promoting Bacterium Bacillus altitudinis KP-14 for Enhancing Miscanthus × giganteus Growth in Metals Contaminated Soil. Biology, 2020, 9, 305.	1.3	21
13	Repetitive Detection of Aromatic Hydrocarbon Contaminants with Bioluminescent Bioreporters Attached on Tapered Optical Fiber Elements. Sensors, 2020, 20, 3237.	2.1	6
14	Estimation of Hg(II) in Soil Samples by Bioluminescent Bacterial Bioreporter E. coli ARL1, and the Effect of Humic Acids and Metal Ions on the Biosensor Performance. Sensors, 2020, 20, 3138.	2.1	8
15	Physiological Response of Miscanthus x giganteus to Plant Growth Regulators in Nutritionally Poor Soil. Plants, 2020, 9, 194.	1.6	14
16	Calorific values of Miscanthus x giganteus biomass cultivated under suboptimal conditions in marginal soils. Studia Oecologica, 2020, 13, 61-67.	0.2	6
17	Impact of plant growth regulators and soil properties on Miscanthus x giganteus biomass parameters and uptake of metals in military soils. Reviews on Environmental Health, 2019, 34, 283-291.	1.1	12
18	Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile. Sustainability, 2019, 11, 3251.	1.6	37

Josef Trögl

#	Article	IF	CITATIONS
19	Changes in the Content of Heavy Metals in BÃlina River during 2012–2017: Effects of Flood and Industrial Inputs. Water (Switzerland), 2019, 11, 481.	1.2	11
20	Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus. Environmental Pollution, 2019, 249, 330-337.	3.7	32
21	Nanostructured Surface and Antimicrobial Properties of Chemically Modified Polymer Foils. ChemistrySelect, 2019, 4, 4382-4391.	0.7	Ο
22	Whole-cell detectors of contaminants constructed by immobilization of bioreporters in form of biofilm on special optical fiber elements. , 2019, , .		1
23	Stability of antibacterial modification of nanofibrous PA6/DTAB membrane during air filtration. Materials Science and Engineering C, 2019, 96, 807-813.	3.8	15
24	Analysis of microbial phospholipids in processes оf biomonitoring of soil condition. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2019, 9, 44-52.	0.1	0
25	Electrospun Antimicrobial PVDFâ€ÐTAB Nanofibrous Membrane for Air Filtration: Effect of DTAB on Structure, Morphology, Adhesion, and Antibacterial Properties. Macromolecular Materials and Engineering, 2018, 303, 1700415.	1.7	21
26	Effect of Growing Miscanthus x giganteus on Soil Microbial Communities in Post-Military Soil. Sustainability, 2018, 10, 4021.	1.6	18
27	Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. Applied Sciences (Switzerland), 2018, 8, 1855.	1.3	13
28	Tourist Traffic Significantly Affects Microbial Communities of Sandstone Cave Sediments in the Protected Landscape Area "Labské PÃskovce―(Czech Republic): Implications for Regulatory Measures. Sustainability, 2018, 10, 396.	1.6	13
29	Metals uptake behaviour in <i>Miscanthus x giganteus</i> plant during growth at the contaminated soil from the military site in SliaÄ, Slovakia. Polish Journal of Chemical Technology, 2018, 20, 1-7.	0.3	17
30	Effect of various chemical oxidation agents on soil microbial communities. Chemical Engineering Journal, 2017, 314, 257-265.	6.6	46
31	The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber. Materials, 2016, 9, 467.	1.3	10
32	Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method. Sustainability, 2016, 8, 253.	1.6	11
33	Preliminary Results on Growing Second Generation Biofuel Crop Miscanthus X Giganteus at The Polluted Military Site in Ukraine. Nova Biotechnologica Et Chimica, 2016, 15, 77-84.	0.1	19
34	Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors, 2015, 15, 25208-25259.	2.1	160
35	Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels. Sensors, 2015, 15, 3426-3434.	2.1	11
36	Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chemical Engineering Journal, 2015, 262, 747-755.	6.6	55

Josef Trögl

#	Article	IF	CITATIONS
37	Biodegradation of Spilled Diesel Fuel in Agricultural Soil: Effect of Humates, Zeolite, and Bioaugmentation. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	27
38	Preparation of iron, aluminium, calcium, magnesium, and zinc humates for environmental applications. Chemical Papers, 2014, 68, .	1.0	5
39	Estimation of the quantity of bacteria encapsulated in Lentikats Biocatalyst via phospholipid fatty acids content: a preliminary study. Folia Microbiologica, 2013, 58, 135-140.	1.1	7
40	A singleâ€parameter logistic equation for fitting concentrationâ€response curves from standard acute ecotoxicity assays. Environmental Toxicology and Chemistry, 2013, 32, 2412-2416.	2.2	1
41	Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History. Sensors, 2012, 12, 1544-1571.	2.1	29
42	Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats Biocatalyst. International Journal of Environmental Science and Technology, 2012, 9, 425-432.	1.8	13
43	Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination, 2011, 280, 191-196.	4.0	16
44	Removal of nitrates from simulated ion-exchange brines with Paracoccus denitrificans encapsulated in Lentikats Biocatalyst. Desalination, 2011, 275, 82-86.	4.0	18
45	Application of Lentikats Biotechnology for removal of nitrates from ion-exchange brines: Implications for adaptation of encapsulated denitrifiers. African Journal of Biotechnology, 2011, 10, .	0.3	5
46	Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 2008, 40, 2107-2115.	4.2	126