Jiang Xu ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7357467/publications.pdf Version: 2024-02-01 53660 102304 6,891 66 45 66 citations h-index g-index papers 66 66 66 6744 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Even Incorporation of Nitrogen into Fe ⁰ Nanoparticles as Crystalline Fe ₄ N for Efficient and Selective Trichloroethylene Degradation. Environmental Science & Enpy; Technology, 2022, 56, 4489-4497. | 4.6 | 26 | | 2 | Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination. Environmental Science & Environ | 4.6 | 16 | | 3 | Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. Science of the Total Environment, 2022, 831, 154914. | 3.9 | 11 | | 4 | Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Echnology, 2022, 56, 5808-5819. | 4.6 | 28 | | 5 | Application of α-Fe2O3 nanoparticles in controlling antibiotic resistance gene transport and interception in porous media. Science of the Total Environment, 2022, 834, 155271. | 3.9 | 4 | | 6 | Modification of Pd Nanoparticles with Lower Work Function Elements for Enhanced Formic Acid Dehydrogenation and Trichloroethylene Dechlorination. ACS Applied Materials & Emp; Interfaces, 2022, 14, 30735-30745. | 4.0 | 5 | | 7 | Origin of the hydrophobicity of sulfur-containing iron surfaces. Physical Chemistry Chemical Physics, 2021, 23, 13971-13976. | 1.3 | 38 | | 8 | Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environmental Science: Nano, 2021, 8, 2607-2617. | 2.2 | 24 | | 9 | Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. Environmental Science & Environmental Science & 2021, 55, 1231-1241. | 4.6 | 16 | | 10 | Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. Environmental Science & Echnology, 2021, 55, 2628-2638. | 4.6 | 98 | | 11 | Sulfidized Nanoscale Zero-Valent Iron: Tuning the Properties of This Complex Material for Efficient Groundwater Remediation. Accounts of Materials Research, 2021, 2, 420-431. | 5.9 | 96 | | 12 | Separation and Analysis of Nanoscale Zero-Valent Iron from Soil. Analytical Chemistry, 2021, 93, 10187-10195. | 3.2 | 14 | | 13 | Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. Journal of Hazardous Materials, 2021, 416, 126119. | 6.5 | 21 | | 14 | Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 2021, 782, 146824. | 3.9 | 69 | | 15 | Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. Environmental Science & Earth Element Recovery. Environmental Earth Element Environmental Earth Element Environmental Earth Element Earth Element Earth Element Earth Element Environmental Earth Element Element Earth Element Eleme | 4.6 | 22 | | 16 | Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environmental Science & E | 4.6 | 27 | | 17 | Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Science of the Total Environment, 2020, 698, 134298. | 3.9 | 16 | | 18 | Adsorption behavior and mechanism of Pb(II) and complex Cu(II) species by biowaste-derived char with amino functionalization. Journal of Colloid and Interface Science, 2020, 559, 215-225. | 5.0 | 54 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 2020, 384, 121253. | 6.5 | 52 | | 20 | Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal, 2020, 400, 125900. | 6.6 | 61 | | 21 | Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron. Environmental Science & E | 4.6 | 128 | | 22 | Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation. Journal of Materials Science, 2020, 55, 12177-12190. | 1.7 | 10 | | 23 | Sulfur Loading and Speciation Control the Hydrophobicity, Electron Transfer, Reactivity, and Selectivity of Sulfidized Nanoscale Zerovalent Iron. Advanced Materials, 2020, 32, e1906910. | 11.1 | 204 | | 24 | CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environmental Science & Eamp; Technology, 2020, 54, 8699-8709. | 4.6 | 65 | | 25 | Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chemical Engineering Journal, 2020, 394, 124876. | 6.6 | 79 | | 26 | Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2,4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination. Environmental Science: Nano, 2020, 7, 1566-1581. | 2.2 | 23 | | 27 | Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. Environmental Science & | 4.6 | 120 | | 28 | Insight into atomic H* generation, H2 evolution, and cathode potential of MnO2 induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination. Chemical Engineering Journal, 2019, 374, 211-220. | 6.6 | 53 | | 29 | Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environmental Science & Environm | 4.6 | 194 | | 30 | AgI loading BiOI composites with enhanced photodegradation efficiency for bisphenol A under simulated solar light. Science of the Total Environment, 2019, 669, 194-204. | 3.9 | 33 | | 31 | Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere, 2019, 226, 726-735. | 4.2 | 148 | | 32 | Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere, 2019, 224, 306-315. | 4.2 | 174 | | 33 | Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chemical Engineering Journal, 2019, 359, 713-722. | 6.6 | 120 | | 34 | Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: Adsorption and dechlorination activity. Applied Catalysis B: Environmental, 2019, 244, 215-224. | 10.8 | 57 | | 35 | Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chemical Engineering Journal, 2019, 358, 1176-1185. | 6.6 | 50 | | 36 | Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal: Comparison and mechanism study. Journal of Molecular Liquids, 2018, 260, 149-158. | 2.3 | 57 | | # | Article | IF | Citations | |----|--|-----|-----------| | 37 | A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 2018, 195, 351-364. | 4.2 | 612 | | 38 | Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 2018, 25, 16640-16651. | 2.7 | 27 | | 39 | Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129, 277-286. | 5.3 | 193 | | 40 | Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chemical Engineering Journal, 2018, 334, 508-518. | 6.6 | 123 | | 41 | MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs.
Chemical Engineering Journal, 2018, 352, 549-557. | 6.6 | 81 | | 42 | Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 2017, 323, 274-298. | 6.5 | 886 | | 43 | Enhanced removal of As(III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chemical Engineering Journal, 2017, 322, 710-721. | 6.6 | 108 | | 44 | Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron. Environmental Science & Scienc | 4.6 | 251 | | 45 | Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. Marine Pollution Bulletin, 2017, 125, 208-215. | 2.3 | 69 | | 46 | Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: Interactions, influence factors, and kinetics. Journal of Hazardous Materials, 2016, 317, 656-666. | 6.5 | 67 | | 47 | Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis.
Chemosphere, 2016, 164, 611-617. | 4.2 | 112 | | 48 | Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2016, 310, 235-245. | 6.5 | 338 | | 49 | Dechlorination Mechanism of 2,4-Dichlorophenol by Magnetic MWCNTs Supported Pd/Fe Nanohybrids:
Rapid Adsorption, Gradual Dechlorination, and Desorption of Phenol. ACS Applied Materials & Samp;
Interfaces, 2016, 8, 7333-7342. | 4.0 | 126 | | 50 | Functional nanomaterials: Study on aqueous Hg(II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 394-402. | 2.7 | 103 | | 51 | Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 365-372. | 2.7 | 44 | | 52 | Arsenic Removal from Natural Water Using Low Cost Granulated Adsorbents: A Review. Clean - Soil, Air, Water, 2015, 43, 13-26. | 0.7 | 81 | | 53 | Multifunctional nanocomposite Fe ₃ O ₄ @SiO ₂ –mPD/SP for selective removal of Pb(<scp>ii</scp>) and Cr(<scp>vi</scp>) from aqueous solutions. RSC Advances, 2014, 4, 45920-45929. | 1.7 | 74 | | 54 | Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles: Effects of pH, temperature, common dissolved ions and humic acid. Chemical Engineering Journal, 2013, 231, 26-35. | 6.6 | 98 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chemical Engineering Journal, 2013, 219, 162-173. | 6.6 | 96 | | 56 | Enhanced dechlorination of 2,4-dichlorophenol by Pd/FeFe3O4 nanocomposites. Journal of Hazardous Materials, 2013, 244-245, 628-636. | 6.5 | 74 | | 57 | Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods. Communications in Soil Science and Plant Analysis, 2013, 44, 2535-2545. | 0.6 | 27 | | 58 | Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. Journal of Hazardous Materials, 2012, 225-226, 36-45. | 6.5 | 109 | | 59 | Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination, 2012, 284, 9-13. | 4.0 | 120 | | 60 | Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. Journal of Colloid and Interface Science, 2012, 369, 460-469. | 5.0 | 237 | | 61 | Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode. Electrochimica Acta, 2012, 69, 389-396. | 2.6 | 68 | | 62 | Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions. Journal of Hazardous Materials, 2011, 196, 160-165. | 6.5 | 24 | | 63 | Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 2011, 85, 1204-1209. | 4.2 | 272 | | 64 | The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 2011, 102, 2455-2461. | 4.8 | 93 | | 65 | Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives. Fuel, 2010, 89, 3613-3617. | 3.4 | 65 | | 66 | Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors. Journal of Hazardous Materials, 2009, 172, 1106-1110. | 6.5 | 100 |