

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357467/publications.pdf Version: 2024-02-01

LIANC YU

#	Article	IF	CITATIONS
1	Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 2017, 323, 274-298.	6.5	886
2	A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 2018, 195, 351-364.	4.2	612
3	Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2016, 310, 235-245.	6.5	338
4	Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 2011, 85, 1204-1209.	4.2	272
5	Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2017, 51, 11269-11277.	4.6	251
6	Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. Journal of Colloid and Interface Science, 2012, 369, 460-469.	5.0	237
7	Sulfur Loading and Speciation Control the Hydrophobicity, Electron Transfer, Reactivity, and Selectivity of Sulfidized Nanoscale Zerovalent Iron. Advanced Materials, 2020, 32, e1906910.	11.1	204
8	Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environmental Science & Technology, 2019, 53, 5936-5945.	4.6	194
9	Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129, 277-286.	5.3	193
10	Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere, 2019, 224, 306-315.	4.2	174
11	Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere, 2019, 226, 726-735.	4.2	148
12	Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology, 2020, 54, 13294-13303.	4.6	128
13	Dechlorination Mechanism of 2,4-Dichlorophenol by Magnetic MWCNTs Supported Pd/Fe Nanohybrids: Rapid Adsorption, Gradual Dechlorination, and Desorption of Phenol. ACS Applied Materials & Interfaces, 2016, 8, 7333-7342.	4.0	126
14	Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chemical Engineering Journal, 2018, 334, 508-518.	6.6	123
15	Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination, 2012, 284, 9-13.	4.0	120
16	Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology, 2019, 53, 13344-13352.	4.6	120
17	Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chemical Engineering Journal, 2019, 359, 713-722.	6.6	120
18	Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere, 2016, 164, 611-617.	4.2	112

JIANG XU

#	Article	IF	CITATIONS
19	Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. Journal of Hazardous Materials, 2012, 225-226, 36-45.	6.5	109
20	Enhanced removal of As(III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chemical Engineering Journal, 2017, 322, 710-721.	6.6	108
21	Functional nanomaterials: Study on aqueous Hg(II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 394-402.	2.7	103
22	Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors. Journal of Hazardous Materials, 2009, 172, 1106-1110.	6.5	100
23	Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles: Effects of pH, temperature, common dissolved ions and humic acid. Chemical Engineering Journal, 2013, 231, 26-35.	6.6	98
24	Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. Environmental Science & Technology, 2021, 55, 2628-2638.	4.6	98
25	Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chemical Engineering Journal, 2013, 219, 162-173.	6.6	96
26	Sulfidized Nanoscale Zero-Valent Iron: Tuning the Properties of This Complex Material for Efficient Groundwater Remediation. Accounts of Materials Research, 2021, 2, 420-431.	5.9	96
27	The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 2011, 102, 2455-2461.	4.8	93
28	Arsenic Removal from Natural Water Using Low Cost Granulated Adsorbents: A Review. Clean - Soil, Air, Water, 2015, 43, 13-26.	0.7	81
29	MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chemical Engineering Journal, 2018, 352, 549-557.	6.6	81
30	Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chemical Engineering Journal, 2020, 394, 124876.	6.6	79
31	Enhanced dechlorination of 2,4-dichlorophenol by Pd/FeFe3O4 nanocomposites. Journal of Hazardous Materials, 2013, 244-245, 628-636.	6.5	74
32	Multifunctional nanocomposite Fe ₃ O ₄ @SiO ₂ –mPD/SP for selective removal of Pb(<scp>ii</scp>) and Cr(<scp>vi</scp>) from aqueous solutions. RSC Advances, 2014, 4, 45920-45929.	1.7	74
33	Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. Marine Pollution Bulletin, 2017, 125, 208-215.	2.3	69
34	Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 2021, 782, 146824.	3.9	69
35	Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode. Electrochimica Acta, 2012, 69, 389-396.	2.6	68
36	Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: Interactions, influence factors, and kinetics. Journal of Hazardous Materials, 2016, 317, 656-666.	6.5	67

JIANG XU

#	Article	IF	CITATIONS
37	Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives. Fuel, 2010, 89, 3613-3617.	3.4	65
38	CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environmental Science & Technology, 2020, 54, 8699-8709.	4.6	65
39	Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal, 2020, 400, 125900.	6.6	61
40	Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal: Comparison and mechanism study. Journal of Molecular Liquids, 2018, 260, 149-158.	2.3	57
41	Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: Adsorption and dechlorination activity. Applied Catalysis B: Environmental, 2019, 244, 215-224.	10.8	57
42	Adsorption behavior and mechanism of Pb(II) and complex Cu(II) species by biowaste-derived char with amino functionalization. Journal of Colloid and Interface Science, 2020, 559, 215-225.	5.0	54
43	Insight into atomic H* generation, H2 evolution, and cathode potential of MnO2 induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination. Chemical Engineering Journal, 2019, 374, 211-220.	6.6	53
44	Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 2020, 384, 121253.	6.5	52
45	Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chemical Engineering Journal, 2019, 358, 1176-1185.	6.6	50
46	Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 365-372.	2.7	44
47	Origin of the hydrophobicity of sulfur-containing iron surfaces. Physical Chemistry Chemical Physics, 2021, 23, 13971-13976.	1.3	38
48	Agl loading BiOI composites with enhanced photodegradation efficiency for bisphenol A under simulated solar light. Science of the Total Environment, 2019, 669, 194-204.	3.9	33
49	Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology, 2022, 56, 5808-5819.	4.6	28
50	Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods. Communications in Soil Science and Plant Analysis, 2013, 44, 2535-2545.	0.6	27
51	Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 2018, 25, 16640-16651.	2.7	27
52	Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environmental Science & Technology, 2021, 55, 12393-12402.	4.6	27
53	Even Incorporation of Nitrogen into Fe ⁰ Nanoparticles as Crystalline Fe ₄ N for Efficient and Selective Trichloroethylene Degradation. Environmental Science & amp; Technology, 2022, 56, 4489-4497.	4.6	26
54	Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions. Journal of Hazardous Materials, 2011, 196, 160-165.	6.5	24

Jiang Xu

#	Article	IF	CITATIONS
55	Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environmental Science: Nano, 2021, 8, 2607-2617.	2.2	24
56	Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2,4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination. Environmental Science: Nano, 2020, 7, 1566-1581.	2.2	23
57	Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. Environmental Science & Technology, 2021, 55, 12549-12560.	4.6	22
58	Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. Journal of Hazardous Materials, 2021, 416, 126119.	6.5	21
59	Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Science of the Total Environment, 2020, 698, 134298.	3.9	16
60	Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. Environmental Science & Technology, 2021, 55, 1231-1241.	4.6	16
61	Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination. Environmental Science & Technology, 2022, 56, 4915-4925.	4.6	16
62	Separation and Analysis of Nanoscale Zero-Valent Iron from Soil. Analytical Chemistry, 2021, 93, 10187-10195.	3.2	14
63	Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. Science of the Total Environment, 2022, 831, 154914.	3.9	11
64	Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation. Journal of Materials Science, 2020, 55, 12177-12190.	1.7	10
65	Modification of Pd Nanoparticles with Lower Work Function Elements for Enhanced Formic Acid Dehydrogenation and Trichloroethylene Dechlorination. ACS Applied Materials & 2022, 14, 30735-30745.	4.0	5
66	Application of α-Fe2O3 nanoparticles in controlling antibiotic resistance gene transport and interception in porous media. Science of the Total Environment, 2022, 834, 155271.	3.9	4