Chenxi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7356761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar-advanced thermocatalytic salvaging of the waste disposable mask with the production of hydrogen and mono-aromatic hydrocarbons. Journal of Hazardous Materials, 2022, 426, 128080.	12.4	25
2	Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chemical Engineering Journal, 2022, 441, 135972.	12.7	69
3	Improvement of the carbon yield from biomass carbonization through sulfuric acid pre-dehydration at room temperature. Bioresource Technology, 2022, 355, 127251.	9.6	17
4	Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst. Bioresource Technology, 2021, 320, 124352.	9.6	41
5	One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification. Bioresource Technology, 2021, 319, 124194.	9.6	27
6	High yield production of nanocrystalline cellulose by microwave-assisted dilute-acid pretreatment combined with enzymatic hydrolysis. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108292.	3.6	14
7	Enhanced production of renewable aromatic hydrocarbons for jet-fuel from softwood biomass and plastic waste using hierarchical ZSM-5 modified with lignin-assisted re-assembly. Energy Conversion and Management, 2021, 236, 114020.	9.2	42
8	Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels. Science of the Total Environment, 2021, 779, 146463.	8.0	22
9	Biochar-driven simplification of the compositions of cellulose-pyrolysis-derived biocrude oil coupled with the promotion of hydrogen generation. Bioresource Technology, 2021, 334, 125251.	9.6	17
10	Lignin-Mediated Preparation of Hierarchical ZSM-5 Catalysts and Their Effects in the Catalytic Co-pyrolysis of Softwood Biomass and Low-Density Polyethylene Mixtures. ACS Sustainable Chemistry and Engineering, 2021, 9, 12602-12613.	6.7	18
11	Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 2020, 297, 122411.	9.6	75
12	From Douglas fir to renewable H ₂ -enriched syngas <i>via ex situ</i> catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 1084-1087.	4.9	4
13	<i>Development of meso-microstructure in MFI zeolites via nanocrystalline cellulose templating for conversion of lignocellulosic biomass to aromatic hydrocarbons</i> . , 2020, , .		0
14	A novel production of phase-divided jet-fuel-range hydrocarbons and phenol-enriched chemicals from catalytic co-pyrolysis of lignocellulosic biomass with low-density polyethylene over carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 3687-3700.	4.9	20
15	Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal, 2020, 399, 125808.	12.7	128
16	Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis. Sustainable Energy and Fuels, 2020, 4, 4614-4624.	4.9	48
17	Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of Douglas fir and low-density polyethylene over bifunctional activated carbon catalysts. Energy Conversion and Management, 2020, 211, 112757.	9.2	47
18	Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO. Science of the Total Environment, 2020, 727, 138411.	8.0	80

CHENXI WANG

#	Article	IF	CITATIONS
19	Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy, 2020, 199, 117459.	8.8	35
20	Microwave-assisted synthesis of bifunctional magnetic solid acid for hydrolyzing cellulose to prepare nanocellulose. Science of the Total Environment, 2020, 731, 138751.	8.0	12
21	Upgrading of pyrolytic lignin into hexamethylbenzene with high purity: demonstration of the "all-to-one―biochemical production strategy in thermo-chemical conversion. Green Chemistry, 2019, 21, 1000-1005.	9.0	17
22	Co-processing of crude and hydrotreated pyrolysis liquids and VGO in a pilot scale FCC riser setup. Fuel Processing Technology, 2018, 181, 157-165.	7.2	50
23	Coprocessing of Catalytic-Pyrolysis-Derived Bio-Oil with VGO in a Pilot-Scale FCC Riser. Industrial & Engineering Chemistry Research, 2016, 55, 3525-3534.	3.7	67