Vinod Gopalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7356284/publications.pdf Version: 2024-02-01

VINOD CODALAN

#	Article	IF	CITATIONS
1	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	6.0	205
2	Carcinoma ex Pleomorphic Adenoma: A Comprehensive Review of Clinical, Pathological and Molecular Data. Head and Neck Pathology, 2012, 6, 1-9.	2.6	198
3	miR-126 in human cancers: Clinical roles and current perspectives. Experimental and Molecular Pathology, 2014, 96, 98-107.	2.1	147
4	Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst, The, 2017, 142, 2211-2219.	3.5	129
5	Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Experimental Cell Research, 2015, 335, 135-147.	2.6	109
6	An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst, The, 2018, 143, 1662-1669.	3.5	106
7	Cancer stem cell: Fundamental experimental pathological concepts and updates. Experimental and Molecular Pathology, 2015, 98, 184-191.	2.1	104
8	Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Critical Reviews in Oncology/Hematology, 2016, 100, 190-208.	4.4	89
9	The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clinical Colorectal Cancer, 2017, 16, 93-102.	2.3	89
10	Diffuse sclerosing variant of papillary thyroid carcinoma—an update of its clinicopathological features and molecular biology. Critical Reviews in Oncology/Hematology, 2015, 94, 64-73.	4.4	81
11	Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie, 2017, 135, 164-172.	2.6	80
12	Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chemical Communications, 2017, 53, 8231-8234.	4.1	79
13	Intestinal microbiota and its association with colon cancer and red/processed meat consumption. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 75-88.	2.8	79
14	Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosensors and Bioelectronics, 2018, 101, 275-281.	10.1	76
15	Hereditary breast cancer; Genetic penetrance and current status with BRCA. Journal of Cellular Physiology, 2019, 234, 5741-5750.	4.1	76
16	Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 7941.	4.1	73
17	Signet-ring cell carcinoma of colorectum—current perspectives and molecular biology. International Journal of Colorectal Disease, 2011, 26, 127-133.	2.2	66
18	Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Critical Reviews in Oncology/Hematology, 2015, 96, 9-19.	4.4	64

#	Article	IF	CITATIONS
19	Whole-exome sequencing reveals critical genes underlying metastasis in oesophageal squamous cell carcinoma. Journal of Pathology, 2017, 242, 500-510.	4.5	63
20	Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Reviews and Reports, 2020, 16, 397-412.	3.8	60
21	MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Experimental Cell Research, 2017, 357, 260-270.	2.6	59
22	The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Critical Reviews in Oncology/Hematology, 2018, 126, 121-128.	4.4	59
23	Downregulation of microRNA-498 in colorectal cancers and its cellular effects. Experimental Cell Research, 2015, 330, 423-428.	2.6	57
24	Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosensors and Bioelectronics, 2017, 87, 615-621.	10.1	56
25	Clinicopathological significance of synchronous carcinoma in colorectal cancer. American Journal of Surgery, 2011, 202, 39-44.	1.8	53
26	Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Experimental Cell Research, 2015, 339, 333-341.	2.6	51
27	<i>RETREG1</i> (<i>FAM134B</i>): A new player in human diseases: 15 years after the discovery in cancer. Journal of Cellular Physiology, 2018, 233, 4479-4489.	4.1	50
28	A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. Journal of Gastroenterology, 2017, 52, 407-418.	5.1	49
29	Optical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 92, 668-678.	10.1	48
30	Co-regulatory potential of vascular endothelial growth factor–A and vascular endothelial growth factor–C in thyroid carcinoma. Human Pathology, 2013, 44, 2204-2212.	2.0	45
31	MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Experimental and Molecular Pathology, 2018, 104, 98-107.	2.1	45
32	Regulation of microRNAâ€1288 in colorectal cancer: Altered expression and its clinicopathological significance. Molecular Carcinogenesis, 2014, 53, E36-44.	2.7	44
33	Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum. Nanoscale, 2017, 9, 8805-8814.	5.6	44
34	A PCR-free electrochemical method for messenger RNA detection in cancer tissue samples. Biosensors and Bioelectronics, 2017, 98, 227-233.	10.1	43
35	The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. European Journal of Cell Biology, 2018, 97, 15-22.	3.6	43
36	Stage dependent expression and tumor suppressive function of <i>FAM134B</i> (<i>JK1</i>) in colon cancer. Molecular Carcinogenesis, 2017, 56, 238-249.	2.7	42

#	Article	IF	CITATIONS
37	The roles of JK-1 (FAM134B) expressions in colorectal cancer. Experimental Cell Research, 2014, 326, 166-173.	2.6	39
38	Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure. Scientific Reports, 2015, 5, 15482.	3.3	37
39	MiR-498 in esophageal squamous cell carcinoma: clinicopathological impacts and functional interactions. Human Pathology, 2017, 62, 141-151.	2.0	37
40	Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Critical Reviews in Oncology/Hematology, 2017, 116, 58-67.	4.4	34
41	Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma. Scientific Reports, 2016, 6, 29173.	3.3	33
42	The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Experimental and Molecular Pathology, 2014, 96, 212-218.	2.1	32
43	Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biology of the Cell, 2016, 108, 51-64.	2.0	32
44	Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Experimental Cell Research, 2016, 348, 146-154.	2.6	31
45	Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells, 2018, 7, 265.	4.1	30
46	JK1 (FAM134B) gene and colorectal cancer: A pilot study on the gene copy number alterations and correlations with clinicopathological parameters. Experimental and Molecular Pathology, 2014, 97, 31-36.	2.1	29
47	JK1 (FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Experimental and Molecular Pathology, 2014, 97, 99-104.	2.1	27
48	An electrochemical method for sensitive and rapid detection of FAM134B protein in colon cancer samples. Scientific Reports, 2017, 7, 133.	3.3	27
49	Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. International Journal of Biological Macromolecules, 2018, 117, 1050-1057.	7.5	27
50	The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer. Gene, 2019, 697, 165-174.	2.2	27
51	Oncogene <i>GAEC1</i> regulates <i>CAPN10</i> expression which predicts survival in esophageal squamous cell carcinoma. World Journal of Gastroenterology, 2013, 19, 2772.	3.3	27
52	A <i>p</i> â€Menthâ€1â€eneâ€4,7â€diol (ECâ€1) from <i>Eucalyptus camaldulensis</i> Dhnh. Triggers Apoptos Cell Cycle Changes in Ehrlich Ascites Carcinoma Cells. Phytotherapy Research, 2015, 29, 573-581.	is and	26
53	Surface Markers for the Identification of Cancer Stem Cells. Methods in Molecular Biology, 2018, 1692, 17-29.	0.9	26
54	Clinical impacts of mammalian target of rapamycin expression in human colorectal cancers. Human Pathology, 2013, 44, 2089-2096.	2.0	25

#	Article	IF	CITATIONS
55	Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst, The, 2017, 142, 1900-1908.	3.5	25
56	Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Analytica Chimica Acta, 2017, 976, 84-93.	5.4	25
57	Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis. Human Pathology, 2018, 71, 145-156.	2.0	25
58	Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Human Genetics, 2017, 136, 321-337.	3.8	24
59	Tumour suppressor properties of miR-15a and its regulatory effects on BCL2 and SOX2 proteins in colorectal carcinomas. Experimental Cell Research, 2018, 370, 245-253.	2.6	24
60	Epithelial–mesenchymal transition and mesenchymal–epithelial transition are essential for the acquisition of stem cell properties in hTERTâ€immortalised oral epithelial cells. Biology of the Cell, 2012, 104, 476-489.	2.0	23
61	Protein interactions of FAM134B with EB1 and APC/beta atenin in vitro in colon carcinoma. Molecular Carcinogenesis, 2018, 57, 1480-1491.	2.7	23
62	Prevalence and types of high-risk human papillomaviruses in head and neck cancers from Bangladesh. BMC Cancer, 2017, 17, 792.	2.6	22
63	GAEC1 and colorectal cancer: a study of the relationships between a novel oncogene and clinicopathologic features. Human Pathology, 2010, 41, 1009-1015.	2.0	21
64	Promoter hypermethylation inactivate tumor suppressor <i>FAM134B</i> and is associated with poor prognosis in colorectal cancer. Genes Chromosomes and Cancer, 2018, 57, 240-251.	2.8	21
65	Characterization of Mucosa-Associated Microbiota in Matched Cancer and Non-neoplastic Mucosa From Patients With Colorectal Cancer. Frontiers in Microbiology, 2019, 10, 1317.	3.5	21
66	FAM134B promotes esophageal squamous cell carcinoma in vitro and its correlations with clinicopathologic features. Human Pathology, 2019, 87, 1-10.	2.0	21
67	The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine, 2017, 58, 153-166.	2.3	20
68	Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Experimental and Molecular Pathology, 2021, 120, 104642.	2.1	20
69	Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations. Experimental and Molecular Pathology, 2017, 102, 41-46.	2.1	19
70	Expression profile of endothelin 1 and its receptor endothelin receptor A in papillary thyroid carcinoma and their correlations with clinicopathologic characteristics. Annals of Diagnostic Pathology, 2014, 18, 43-48.	1.3	17
71	Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Current Cancer Drug Targets, 2019, 19, 561-570.	1.6	17
72	Altered <i>JSâ€⊋</i> expression in colorectal cancers and its clinical pathological relevance. Molecular Oncology, 2011, 5, 475-481.	4.6	16

#	Article	IF	CITATIONS
73	Kaempferia rotunda tuberous rhizome lectin induces apoptosis and growth inhibition of colon cancer cells in vitro. International Journal of Biological Macromolecules, 2019, 141, 775-782.	7.5	16
74	Role of miR-193a in Cancer: Complexity and Factors Control the Pattern of its Expression. Current Cancer Drug Targets, 2018, 18, 618-628.	1.6	16
75	Quantitative analysis of the expression of TCF-alpha and EGFR in papillary thyroid carcinoma: clinicopathological relevance. Pathology, 2011, 43, 40-47.	0.6	15
76	Expression pattern of miR-451 and its target <i>MIF</i> (<i>macrophage migration inhibitory) Tj ETQq0 0 0 rgB</i>	Г /Overlock 2.0	10 Tf 50 622
77	Diet derived polycyclic aromatic hydrocarbons and its pathogenic roles in colorectal carcinogenesis. Critical Reviews in Oncology/Hematology, 2021, 168, 103522.	4.4	14
78	The expression profiles of the galectin gene family in colorectal adenocarcinomas. Human Pathology, 2016, 53, 105-113.	2.0	13
79	Evaluation of multidisciplinary strategies and traditional approaches in teaching pathology in medical students. Pathology International, 2018, 68, 459-466.	1.3	13
80	Detention and Identification of Cancer Stem Cells in Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, 2020, 2129, 177-191.	0.9	13
81	Metachronous carcinomas in colorectum and its clinicopathological significance. International Journal of Colorectal Disease, 2012, 27, 1303-1310.	2.2	12
82	Twelve tips for using Facebook as a learning platform. Medical Teacher, 2020, 43, 1-13.	1.8	12
83	The Melanoma and Breast Cancer Association: An Overview of their â€~Second Primary Cancers' and the Epidemiological, Genetic and Biological correlations. Critical Reviews in Oncology/Hematology, 2020, 152, 102989.	4.4	11
84	Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. International Journal of Molecular Sciences, 2021, 22, 10959.	4.1	11
85	Identification of Novel Mutations and Expressions of EPAS1 in Phaeochromocytomas and Paragangliomas. Genes, 2020, 11, 1254.	2.4	10
86	Molecular Deregulation of EPAS1 in the Pathogenesis of Esophageal Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 1534.	2.8	10
87	Integrating gross pathology into teaching of undergraduate medical science students using human cadavers. Pathology International, 2016, 66, 511-517.	1.3	9
88	MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Human Pathology, 2017, 64, 91-97.	2.0	9
89	Identification of Cancer Stem Cells in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 165-176.	0.9	9
90	Genital herpes zoster as a consequence of cancer chemotherapy-induced immunosuppression: report of a case. Journal of Infection and Chemotherapy, 2012, 18, 955-957.	1.7	8

#	Article	IF	CITATIONS
91	Nanotechnology and its medical applications: revisiting public policies from a regulatory perspective in Australia. Nanotechnology Reviews, 2017, 6, 255-269.	5.8	8
92	Cancer Stem Cells. , 2019, , 77-87.		8
93	Hemin, a major heme molecule, induced cellular and genetic alterations in normal colonic and colon cancer cells. Pathology Research and Practice, 2021, 224, 153530.	2.3	8
94	Identification of novel mutations and functional impacts of EPAS1 in colorectal cancer. Cancer Medicine, 2021, 10, 5557-5573.	2.8	7
95	<i>Gene amplified in oesophageal cancer 1 (GAEC1)</i> amplification in colorectal cancers and its impact on patient's survival. Journal of Clinical Pathology, 2013, 66, 721-723.	2.0	6
96	Cellular expression, in-vitro and in-vivo confirmation of GAEC1 oncogenic properties in colon cancer. European Journal of Cell Biology, 2017, 96, 487-495.	3.6	6
97	Overexpression of family with sequence similarity 134, member B (FAM134B) in colon cancers and its tumor suppressive properties in vitro. Cancer Biology and Therapy, 2020, 21, 954-962.	3.4	6
98	Roles of long-non-coding RNAs in cancer therapy through the PI3K/Akt signalling pathway. Histology and Histopathology, 2019, 34, 593-609.	0.7	6
99	E-learning and the virtual transformation of histopathology teaching during COVID-19: its impact on student learning experience and outcome. BMC Medical Education, 2022, 22, 22.	2.4	6
100	Expression of GAEC1 mRNA and protein and its association with clinical and pathological parameters of patients with colorectal adenocarcinoma. Experimental and Molecular Pathology, 2018, 104, 71-75.	2.1	5
101	Epigenetics: DNA Methylation Analysis in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 247-256.	0.9	5
102	RNA Interference-Mediated Gene Silencing in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 269-279.	0.9	5
103	GAEC1 mutations and copy number aberration is associated with biological aggressiveness of colorectal cancer. European Journal of Cell Biology, 2018, 97, 230-241.	3.6	5
104	Genetic Heterogeneity of Single Circulating Tumour Cells in Colorectal Carcinoma. International Journal of Molecular Sciences, 2020, 21, 7766.	4.1	5
105	Roles of MicroRNAs in Esophageal Squamous Cell Carcinoma Pathogenesis. Methods in Molecular Biology, 2020, 2129, 241-257.	0.9	5
106	Bone Invasive Properties of Oral Squamous Cell Carcinoma and its Interactions with Alveolar Bone Cells: An In Vitro Study. Current Cancer Drug Targets, 2019, 19, 631-640.	1.6	5
107	Heme oxygenase-1 & 2 and their potential contribution in heme induced colorectal carcinogenesis. Pathology Research and Practice, 2022, 233, 153885.	2.3	5
108	Electrochemical Detection of FAM134B Mutations in Oesophageal Cancer Based on DNAâ€Gold Affinity Interactions. Electroanalysis, 2017, 29, 1359-1367.	2.9	4

#	Article	IF	CITATIONS
109	Detection and Quantification of MicroRNAs in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 257-268.	0.9	4
110	HFE variants in colorectal cancer and their clinicopathological correlations. Human Pathology, 2021, 117, 9-30.	2.0	4
111	Circulatory Tumor Cells in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 177-186.	0.9	3
112	<i>GAEC1</i> drives colon cancer progression. Molecular Carcinogenesis, 2019, 58, 1145-1154.	2.7	3
113	Polymorphisms in PAH metabolising enzyme CYP1A1 in colorectal cancer and their clinicopathological correlations. Pathology Research and Practice, 2022, 231, 153801.	2.3	3
114	An unusual case of foreskin phimosis after radiotherapy for rectal carcinoma. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2012, 16, 292-294.	1.4	2
115	Enumeration, characterisation and clinicopathological significance of circulating tumour cells in patients with colorectal carcinoma. Cancer Genetics, 2021, 254-255, 48-57.	0.4	2
116	Mass Spectrometry for Biomarkers Discovery in Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, 2020, 2129, 259-268.	0.9	2
117	Estrogen Receptor Alpha Gene Expression in Breast Cancer Tissues from the Iranian Population - a Pilot Study. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8789-8791.	1.2	2
118	Joint frailty modeling of time-to-event data to elicit the evolution pathway of events: a generalized linear mixed model approach. Biostatistics, 2022, 24, 108-123.	1.5	2
119	AHR gene expression and the polymorphism rs2066853 are associated with clinicopathological parameters in colorectal carcinoma. Human Pathology, 2022, 122, 50-59.	2.0	2
120	mTOR expression in colorectal adenoma—reply. Human Pathology, 2014, 45, 897.	2.0	1
121	Targeted Single Gene Mutation in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 213-229.	0.9	1
122	Somatic DNA Copy-Number Alterations Detection for Esophageal Adenocarcinoma Using Digital Polymerase Chain Reaction. Methods in Molecular Biology, 2018, 1756, 195-212.	0.9	1
123	DNA Genome Sequencing in Esophageal Adenocarcinoma. Methods in Molecular Biology, 2018, 1756, 231-246.	0.9	1
124	In Vitro Assays of Biological Aggressiveness of Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, 2020, 2129, 161-175.	0.9	1
125	Liquid Biopsy: Detection of Circulating Tumor Cells in Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, 2020, 2129, 193-202.	0.9	1
126	Immunoblotting in Detection of Tumor-Associated Antigens in Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, 2020, 2129, 269-277.	0.9	1

#	Article	IF	CITATIONS
127	Rapamycin as a potent and selective inhibitor of vascular endothelial growth factor receptor in breast carcinoma. International Journal of Immunopathology and Pharmacology, 2022, 36, 205873842110596.	2.1	1
128	Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy. Current Cancer Drug Targets, 2022, 22, .	1.6	1
129	The Role of Stem Cells in Colorectal Cancer Carcinogenesis and Treatment. Pancreatic Islet Biology, 2019, , 93-111.	0.3	0
130	ID: 1036 FAM134B, a new player in human colorectal cancer pathogenesis. Biomedical Research and Therapy, 2017, 4, 113.	0.6	0
131	2', 4'-dihydroxy-3, 4-methylenedioxychalcone Activate Mitochondrial Apoptosis of Ehrlich Ascites Carcinoma Cells. Current Drug Therapy, 2020, 15, 337-350.	0.3	0
132	Refined immunoRNases for the efficient targeting and selective killing of tumour cells: A novel strategy. Life Sciences, 2022, 289, 120222.	4.3	0