Ning Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7356042/publications.pdf

Version: 2024-02-01

			28274	4	6799
178	9,358		55		89
papers	citations		h-index		g-index
184	184		184		5478
all docs	docs citations		times ranked		citing authors

#	Article	IF	CITATIONS
1	Optimal Energy Operation Strategy for We-Energy of Energy Internet Based on Hybrid Reinforcement Learning With Human-in-the-Loop. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 32-42.	9.3	13
2	Two-Stage Bootstrap Sampling for Probabilistic Load Forecasting. IEEE Transactions on Engineering Management, 2022, 69, 720-728.	3.5	12
3	A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors. Energy, 2022, 238, 121829.	8.8	26
4	Frequency Regulation From Distributed Energy Resource Using Cloud-Edge Collaborations Under Wireless Environments. IEEE Transactions on Smart Grid, 2022, 13, 367-380.	9.0	8
5	Modeling Hydrogen Supply Chain in Renewable Electric Energy System Planning. IEEE Transactions on Industry Applications, 2022, 58, 2780-2791.	4.9	29
6	A Novel Preheating Coordination Approach in Electrified Heat Systems. IEEE Transactions on Power Systems, 2022, 37, 3092-3103.	6.5	2
7	Resilience Oriented Planning of Urban Multi-Energy Systems With Generalized Energy Storage Sources. IEEE Transactions on Power Systems, 2022, 37, 2906-2918.	6.5	44
8	Priority-Driven Self-Optimizing Power Control Scheme for Interlinking Converters of Hybrid AC/DC Microgrid Clusters in Decentralized Manner. IEEE Transactions on Power Electronics, 2022, 37, 5970-5983.	7.9	16
9	Uncertainty modelling of an industry facility as a multi-energy demand response provider. Applied Energy, 2022, 307, 118215.	10.1	7
10	An Efficient Power System Planning Model Considering Year-Round Hourly Operation Simulation. IEEE Transactions on Power Systems, 2022, 37, 4925-4935.	6.5	16
11	Exploring the Cellular Base Station Dispatch Potential Towards Power System Frequency Regulation. IEEE Transactions on Power Systems, 2022, 37, 820-823.	6.5	12
12	Backcasting Technical and Policy Targets for Constructing Low-Carbon Power Systems. IEEE Transactions on Power Systems, 2022, 37, 4896-4911.	6.5	14
13	Matrix modelling and optimisation calculation method for largeâ€scale integrated Weâ€Energy. IET Energy Systems Integration, 2022, 4, 380-392.	1.8	1
14	Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration. Renewable and Sustainable Energy Reviews, 2022, 160, 112203.	16.4	21
15	A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies. Applied Energy, 2022, 314, 118715.	10.1	19
16	A feature extraction and machine learning framework for bearing fault diagnosis. Renewable Energy, 2022, 191, 987-997.	8.9	29
17	A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading. Nature Energy, 2022, 7, 495-502.	39 . 5	39
18	Cost increase in the electricity supply to achieve carbon neutrality in China. Nature Communications, 2022, 13, .	12.8	111

#	Article	IF	Citations
19	A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling. Energy, 2021, 215, 119121.	8.8	30
20	Distributed Adaptive Dual Control via Consensus Algorithm in the Energy Internet. IEEE Transactions on Industrial Informatics, 2021, 17, 4848-4860.	11.3	34
21	Steady-state security region of energy hub: Modeling, calculation, and applications. International Journal of Electrical Power and Energy Systems, 2021, 125, 106551.	5.5	20
22	Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands. Applied Energy, 2021, 282, 116064.	10.1	13
23	Power system transition in China under the coordinated development of power sources, network, demand response, and energy storage. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e392.	4.1	3
24	Bounding Regression Errors in Data-Driven Power Grid Steady-State Models. IEEE Transactions on Power Systems, 2021, 36, 1023-1033.	6.5	21
25	Sparse Oblique Decision Tree for Power System Security Rules Extraction and Embedding. IEEE Transactions on Power Systems, 2021, 36, 1605-1615.	6.5	24
26	Transmission Planning With Battery-Based Energy Storage Transportation For Power Systems With High Penetration of Renewable Energy. IEEE Transactions on Power Systems, 2021, 36, 4928-4940.	6.5	66
27	Two-Stage Decoupled Estimation Approach of Aggregated Baseline Load Under High Penetration of Behind-the-Meter PV System. IEEE Transactions on Smart Grid, 2021, 12, 4876-4885.	9.0	53
28	Power system planning with high renewable energy penetration considering demand response. Global Energy Interconnection, 2021, 4, 69-80.	2.3	20
29	Preliminary analysis of longâ€ŧerm storage requirement in enabling high renewable energy penetration: A case of East Asia. IET Renewable Power Generation, 2021, 15, 1255-1269.	3.1	12
30	An Integrated Frequency Regualtion Control Strategy Considering the Full Wind Speed of Wind Turbine and Energy Storage System., 2021,,.		2
31	A trusted energy trading framework by marrying blockchain and optimization. Advances in Applied Energy, 2021, 2, 100029.	13.2	53
32	Enhancing the power grid flexibility with battery energy storage transportation and transmission switching. Applied Energy, 2021, 290, 116692.	10.1	28
33	Aggregating Distributed Energy Storage: Cloud-Based Flexibility Services From China. IEEE Power and Energy Magazine, 2021, 19, 63-73.	1.6	15
34	A Confidence-Aware Machine Learning Framework for Dynamic Security Assessment. IEEE Transactions on Power Systems, 2021, 36, 3907-3920.	6.5	22
35	Evaluating the Dispatchable Capacity of Base Station Backup Batteries in Distribution Networks. IEEE Transactions on Smart Grid, 2021, 12, 3966-3979.	9.0	40
36	Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method. IEEE Transactions on Power Systems, 2021, 36, 3948-3959.	6.5	43

#	Article	IF	CITATIONS
37	Searching for Critical Power System Cascading Failures With Graph Convolutional Network. IEEE Transactions on Control of Network Systems, 2021, 8, 1304-1313.	3.7	20
38	Distribution Network Admittance Matrix Estimation With Linear Regression. IEEE Transactions on Power Systems, 2021, 36, 4896-4899.	6.5	17
39	Secondary Frequency Regulation from Variable Generation Through Uncertainty Decomposition: An Economic and Reliability Perspective. IEEE Transactions on Sustainable Energy, 2021, 12, 2019-2030.	8.8	12
40	Frequency-Constrained Resilient Scheduling of Microgrid: A Distributionally Robust Approach. IEEE Transactions on Smart Grid, 2021, 12, 4914-4925.	9.0	30
41	Cloud energy storage in multi energy systems: Optimal scheduling and profit-sharing approaches. , 2021, , .		1
42	Topology Learning Aided False Data Injection Attack without Prior Topology Information., 2021,,.		5
43	Combining Probability Density Forecasts for Power Electrical Loads. IEEE Transactions on Smart Grid, 2020, 11, 1679-1690.	9.0	41
44	Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. IEEE Transactions on Smart Grid, 2020, 11, 1307-1318.	9.0	192
45	Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach. IEEE Transactions on Power Systems, 2020, 35, 731-741.	6.5	111
46	On An Equivalent Representation of the Dynamics in District Heating Networks for Combined Electricity-Heat Operation. IEEE Transactions on Power Systems, 2020, 35, 560-570.	6.5	95
47	Incorporating Massive Scenarios in Transmission Expansion Planning With High Renewable Energy Penetration. IEEE Transactions on Power Systems, 2020, 35, 1061-1074.	6.5	58
48	Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model. Applied Energy, 2020, 258, 114029.	10.1	31
49	A Cost-Sharing Approach for Decentralized Electricity–Heat Operation With Renewables. IEEE Transactions on Sustainable Energy, 2020, 11, 1838-1847.	8.8	16
50	Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning. Electric Power Systems Research, 2020, 179, 106082.	3.6	17
51	A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise. IEEE Transactions on Smart Grid, 2020, 11, 2576-2587.	9.0	33
52	Deliverable Flexible Ramping Products Considering Spatiotemporal Correlation of Wind Generation and Demand Uncertainties. IEEE Transactions on Power Systems, 2020, 35, 2561-2574.	6.5	29
53	Transmission Expansion Planning Test System for AC/DC Hybrid Grid With High Variable Renewable Energy Penetration. IEEE Transactions on Power Systems, 2020, 35, 2597-2608.	6. 5	80
54	Load probability density forecasting by transforming and combining quantile forecasts. Applied Energy, 2020, 277, 115600.	10.1	41

#	Article	IF	CITATIONS
55	Modeling frequency response dynamics in power system scheduling. Electric Power Systems Research, 2020, 189, 106549.	3.6	21
56	Modeling load forecast uncertainty using generative adversarial networks. Electric Power Systems Research, 2020, 189, 106732.	3.6	28
57	Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage. Applied Energy, 2020, 278, 115601.	10.1	17
58	Planning district multiple energy systems considering year-round operation. Energy, 2020, 213, 118829.	8.8	8
59	Expansion Planning Model Coordinated with both Stationary and Transportable Storage Systems for Transmission Networks with High RES Penetration. , 2020, , .		2
60	Multienergy Networks Analytics: Standardized Modeling, Optimization, and Low Carbon Analysis. Proceedings of the IEEE, 2020, 108, 1411-1436.	21.3	68
61	A clustering-based scenario generation framework for power market simulation with wind integration. Journal of Renewable and Sustainable Energy, 2020, 12, 036301.	2.0	14
62	Topology Identification and Line Parameter Estimation for Non-PMU Distribution Network: A Numerical Method. IEEE Transactions on Smart Grid, 2020, 11, 4440-4453.	9.0	111
63	Matrix modeling of energy hub with variable energy efficiencies. International Journal of Electrical Power and Energy Systems, 2020, 119, 105876.	5.5	45
64	The future role of nuclear power in the coal dominated power system: The case of Shandong. Journal of Cleaner Production, 2020, 256, 120744.	9.3	12
65	Profit-Sharing Mechanism for Aggregation of Wind Farms and Concentrating Solar Power. IEEE Transactions on Sustainable Energy, 2020, 11, 2606-2616.	8.8	45
66	Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 2020, 261, 114390.	10.1	61
67	Fast Power System Cascading Failure Path Searching With High Wind Power Penetration. IEEE Transactions on Sustainable Energy, 2020, 11, 2274-2283.	8.8	22
68	Modeling Frequency Dynamics in Unit Commitment With a High Share of Renewable Energy. IEEE Transactions on Power Systems, 2020, 35, 4383-4395.	6.5	125
69	Modeling the Operation Mechanism of Combined P2G and Gas-Fired Plant With CO ₂ Recycling. IEEE Transactions on Smart Grid, 2019, 10, 1111-1121.	9.0	98
70	Robust Two-Stage Regional-District Scheduling of Multi-carrier Energy Systems With a Large Penetration of Wind Power. IEEE Transactions on Sustainable Energy, 2019, 10, 1227-1239.	8.8	133
71	Operation of a High Renewable Penetrated Power System With CSP Plants: A Look-Ahead Stochastic Unit Commitment Model. IEEE Transactions on Power Systems, 2019, 34, 140-151.	6.5	106
72	Combining Probabilistic Load Forecasts. IEEE Transactions on Smart Grid, 2019, 10, 3664-3674.	9.0	139

#	Article	IF	Citations
73	Feature selection for probabilistic load forecasting via sparse penalized quantile regression. Journal of Modern Power Systems and Clean Energy, 2019, 7, 1200-1209.	5.4	15
74	From demand response to integrated demand response: review and prospect of research and application. Protection and Control of Modern Power Systems, 2019, 4, .	7.5	176
75	Variable-Generation Integration in China: An Update. IEEE Power and Energy Magazine, 2019, 17, 99-107.	1.6	3
76	Adjustable and distributionally robust chance-constrained economic dispatch considering wind power uncertainty. Journal of Modern Power Systems and Clean Energy, 2019, 7, 658-664.	5.4	15
77	Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties. Applied Energy, 2019, 252, 113420.	10.1	56
78	Probabilistic Optimal Energy Flow of District Multienergy Systems: An MPLP-Based Online Dictionary-Learning Approach. IEEE Transactions on Industrial Informatics, 2019, 15, 4867-4877.	11.3	7
79	Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 2019, 242, 205-215.	10.1	139
80	Study on the Comprehensive Benefit Evaluation of Transnational Power Networking Projects Based on Multi-Project Stakeholder Perspectives. Energies, 2019, 12, 249.	3.1	10
81	Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow. Applied Energy, 2019, 239, 938-947.	10.1	40
82	Aggregate Model of Massive Distributed Energy Storage for Power System Operation. , 2019, , .		0
83	A Linear LMP Model for Active and Reactive Power with Power Loss. , 2019, , .		7
84	Fast Multi-Energy Systems Reliability Evaluation Using Multi-Parametric Linear Programming. , 2019, , .		3
85	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. , 2019, , .		1
86	A Secure Charging Scheme for Electric Vehicles With Smart Communities in Energy Blockchain. IEEE Internet of Things Journal, 2019, 6, 4601-4613.	8.7	247
87	Enabling a Transactive Distribution System via Real-Time Distributed Optimization. IEEE Transactions on Smart Grid, 2019, 10, 4907-4917.	9.0	23
88	A General Formulation of Linear Power Flow Models: Basic Theory and Error Analysis. IEEE Transactions on Power Systems, 2019, 34, 1315-1324.	6.5	121
89	Planning Multiple Energy Systems Toward Low-Carbon Society: A Decentralized Approach. IEEE Transactions on Smart Grid, 2019, 10, 4859-4869.	9.0	101
90	Probabilistic individual load forecasting using pinball loss guided LSTM. Applied Energy, 2019, 235, 10-20.	10.1	265

#	Article	IF	CITATIONS
91	Planning Low-Carbon Campus Energy Hubs. IEEE Transactions on Power Systems, 2019, 34, 1895-1907.	6.5	54
92	A High-Efficiency Network-Constrained Clustered Unit Commitment Model for Power System Planning Studies. IEEE Transactions on Power Systems, 2019, 34, 2498-2508.	6.5	63
93	Introducing Uncertainty Components in Locational Marginal Prices for Pricing Wind Power and Load Uncertainties. IEEE Transactions on Power Systems, 2019, 34, 2013-2024.	6.5	70
94	The Dual Control With Consideration of Security Operation and Economic Efficiency for Energy Hub. IEEE Transactions on Smart Grid, 2019, 10, 5930-5941.	9.0	59
95	MPLP-Based Fast Power System Reliability Evaluation Using Transmission Line Status Dictionary. IEEE Transactions on Power Systems, 2019, 34, 1630-1640.	6.5	27
96	Standardized Matrix Modeling of Multiple Energy Systems. IEEE Transactions on Smart Grid, 2019, 10, 257-270.	9.0	164
97	Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. IEEE Transactions on Smart Grid, 2019, 10, 1452-1464.	9.0	246
98	Data-Driven Power Flow Linearization: A Regression Approach. IEEE Transactions on Smart Grid, 2019, 10, 2569-2580.	9.0	127
99	Modeling Carbon Emission Flow in Multiple Energy Systems. IEEE Transactions on Smart Grid, 2019, 10, 3562-3574.	9.0	130
100	Copula Theory and Dependent Probabilistic Sequence Operation. , 2019, , 11-30.		O
100	Copula Theory and Dependent Probabilistic Sequence Operation., 2019, , 11-30. Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61.	2.5	0 21
	Available transfer capability evaluation in a deregulated electricity market considering correlated	2.5 6.5	
101	Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61. Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power		21
101	Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61. Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power Systems, 2018, 33, 3428-3437. On the explosion limit of syngas with CO 2 and H 2 O additions. International Journal of Hydrogen	6.5	130
101 102 103	Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61. Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power Systems, 2018, 33, 3428-3437. On the explosion limit of syngas with CO 2 and H 2 O additions. International Journal of Hydrogen Energy, 2018, 43, 3317-3329. Data-Driven Probabilistic Net Load Forecasting With High Penetration of Behind-the-Meter PV. IEEE	6.5 7.1	21 130 40
101 102 103	Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61. Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power Systems, 2018, 33, 3428-3437. On the explosion limit of syngas with CO 2 and H 2 O additions. International Journal of Hydrogen Energy, 2018, 43, 3317-3329. Data-Driven Probabilistic Net Load Forecasting With High Penetration of Behind-the-Meter PV. IEEE Transactions on Power Systems, 2018, 33, 3255-3264. Scenario Map Based Stochastic Unit Commitment. IEEE Transactions on Power Systems, 2018, 33,	6.5 7.1 6.5	21 130 40 194
101 102 103 104	Available transfer capability evaluation in a deregulated electricity market considering correlated wind power. IET Generation, Transmission and Distribution, 2018, 12, 53-61. Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power Systems, 2018, 33, 3428-3437. On the explosion limit of syngas with CO 2 and H 2 O additions. International Journal of Hydrogen Energy, 2018, 43, 3317-3329. Data-Driven Probabilistic Net Load Forecasting With High Penetration of Behind-the-Meter PV. IEEE Transactions on Power Systems, 2018, 33, 3255-3264. Scenario Map Based Stochastic Unit Commitment. IEEE Transactions on Power Systems, 2018, 33, 4694-4705.	6.5 7.1 6.5	21 130 40 194 34

#	Article	IF	Citations
109	Steady-State Power Flow Model of Energy Router Embedded AC Network and Its Application in Optimizing Power System Operation. IEEE Transactions on Smart Grid, 2018, 9, 4828-4837.	9.0	72
110	Decision-Making Models for the Participants in Cloud Energy Storage. IEEE Transactions on Smart Grid, 2018, 9, 5512-5521.	9.0	116
111	Effect of Natural Gas Flow Dynamics in Robust Generation Scheduling Under Wind Uncertainty. IEEE Transactions on Power Systems, 2018, 33, 2087-2097.	6.5	119
112	Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied Energy, 2018, 210, 1141-1150.	10.1	196
113	Automatic and linearized modeling of energy hub and its flexibility analysis. Applied Energy, 2018, 211, 705-714.	10.1	91
114	Optimal Operation of Hybrid AC/DC Distribution Network with High Penetrated Renewable Energy. , 2018, , .		6
115	A State-Independent Linear Power Flow Model with Accurate Estimation of Voltage Magnitude. , 2018, ,		2
116	Bi-Level Expansion Planning of Multiple Energy Systems under Carbon Emission Constraints., 2018,,.		7
117	Linearized Model for Active and Reactive LMP Considering Bus Voltage Constraints. , 2018, , .		5
118	Modelling Aspects of Flexible Multi-Energy Microgrids., 2018,,.		5
119	Conditional Residual Modeling for Probabilistic Load Forecasting. IEEE Transactions on Power Systems, 2018, 33, 7327-7330.	6.5	66
120	Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach. Applied Energy, 2018, 230, 531-539.	10.1	37
121	Harmonious Integration of Faster-Acting Energy Storage Systems Into Frequency Control Reserves in Power Grid With High Renewable Generation. IEEE Transactions on Power Systems, 2018, 33, 6193-6205.	6.5	69
122	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Transactions on Power Systems, 2018, 33, 6630-6641.	6.5	183
123	LMP Revisited: A Linear Model for the Loss-Embedded LMP. IEEE Transactions on Power Systems, 2017, 32, 4080-4090.	6.5	50
124	Harnessing Flexibility from Hot and Cold: Heat Storage and Hybrid Systems Can Play a Major Role. IEEE Power and Energy Magazine, 2017, 15, 25-33.	1.6	35
125	Analysis of transmission expansion planning considering consumption-based carbon emission accounting. Applied Energy, 2017, 193, 232-242.	10.1	41
126	An integrated source-grid-load planning model at the macro level: Case study for China's power sector. Energy, 2017, 126, 231-246.	8.8	53

#	Article	IF	Citations
127	Long-term coordination of transmission and storage to integrate wind power. CSEE Journal of Power and Energy Systems, 2017, 3, 36-43.	1.1	50
128	Cloud energy storage for residential and small commercial consumers: A business case study. Applied Energy, 2017, 188, 226-236.	10.1	169
129	A State-Independent Linear Power Flow Model With Accurate Estimation of Voltage Magnitude. IEEE Transactions on Power Systems, 2017, 32, 3607-3617.	6.5	221
130	Dependent Discrete Convolution Based Probabilistic Load Flow for the Active Distribution System. IEEE Transactions on Sustainable Energy, 2017, 8, 1000-1009.	8.8	75
131	Linear three-phase power flow for unbalanced active distribution networks with PV nodes. CSEE Journal of Power and Energy Systems, 2017, 3, 321-324.	1.1	87
132	Corrective receding horizon scheduling of flexible distributed multi-energy microgrids. Applied Energy, 2017, 207, 176-194.	10.1	70
133	Managing Wind Power Uncertainty Through Strategic Reserve Purchasing. IEEE Transactions on Power Systems, 2017, 32, 2547-2559.	6.5	45
134	Optimal Reactive Power Dispatch With Accurately Modeled Discrete Control Devices: A Successive Linear Approximation Approach. IEEE Transactions on Power Systems, 2017, 32, 2435-2444.	6.5	67
135	Modeling the transient security constraints of natural gas network in day-ahead power system scheduling., 2017,,.		2
136	Enhancing shortâ€term probabilistic residential load forecasting with quantile long–shortâ€term memory. Journal of Engineering, 2017, 2017, 2622-2627.	1.1	26
137	Optimal reactive power dispatch with accurately modeled discrete control devices: A successive linear approximation approach., 2017,,.		2
138	Research on Optimal Planning of Access Location and Access Capacity of Large-Scale Integrated Wind Power Plants. Energies, 2017, 10, 442.	3.1	2
139	Impact of Carbon market on China's electricity market: An equilibrium analysis., 2017,,.		5
140	Predictors for attending annual eye screening for diabetic retinopathy amongst patients with diabetes in an urban community of Beijing. International Journal of Ophthalmology, 2017, 10, 1144-1149.	1.1	5
141	Techno-economic analysis of contingency reserve allocation scheme for combined UHV DC and AC receiving-end power system. CSEE Journal of Power and Energy Systems, 2016, 2, 62-70.	1.1	13
142	Strategic CBDR bidding considering FTR and wind power. IET Generation, Transmission and Distribution, 2016, 10, 2464-2474.	2.5	25
143	Evaluating the spatial correlations of multi-area load forecasting errors. , 2016, , .		3
144	An optimum regression approach for analyzing weather influence on the energy consumption. , 2016, , .		3

#	Article	IF	Citations
145	Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants. Applied Energy, 2016, 176, 183-195.	10.1	134
146	Coordinated Operation of Concentrated Solar Power and Wind Resources for the Provision of Energy and Reserve Services. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	55
147	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment., 2016,,.		9
148	Generalized steady-state model for energy router with applications in power flow calculation. , 2016, , .		3
149	Assessing the dispatch flexibility of coordinated solar and hydro generation. , 2016, , .		1
150	Exploring the flexibility of CSP for wind power integration using interval optimization. , 2016, , .		0
151	Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. Applied Energy, 2016, 184, 987-994.	10.1	186
152	Coupon-Based Demand Response Considering Wind Power Uncertainty: A Strategic Bidding Model for Load Serving Entities. IEEE Transactions on Power Systems, 2016, 31, 1025-1037.	6.5	151
153	Strategic scheduling of energy storage for load serving entities in locational marginal pricing market. IET Generation, Transmission and Distribution, 2016, 10, 1258-1267.	2.5	56
154	Copula Based Dependent Discrete Convolution for Power System Uncertainty Analysis. IEEE Transactions on Power Systems, 2016, 31, 5204-5205.	6.5	40
155	A Probabilistic Method for Determining Grid-Accommodable Wind Power Capacity Based on Multiscenario System Operation Simulation. IEEE Transactions on Smart Grid, 2016, 7, 400-409.	9.0	28
156	A Game Theoretical Pricing Mechanism for Multi-Area Spinning Reserve Trading Considering Wind Power Uncertainty. IEEE Transactions on Power Systems, 2016, 31, 1084-1095.	6.5	29
157	Unit Commitment Model in Smart Grid Environment Considering Carbon Emissions Trading. IEEE Transactions on Smart Grid, 2016, 7, 420-427.	9.0	132
158	A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. IEEE Transactions on Sustainable Energy, 2015, 6, 1283-1291.	8.8	152
159	Geographical impacts of natural disaster on power system reliability., 2015,,.		1
160	Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services. Journal of Modern Power Systems and Clean Energy, 2015, 3, 131-138.	5.4	25
161	Estimating life-cycle energy payback ratio of overhead transmission line toward low carbon development. Journal of Modern Power Systems and Clean Energy, 2015, 3, 123-130.	5.4	5
162	Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils. Environmental Engineering Science, 2015, 32, 470-478.	1.6	25

#	Article	IF	CITATIONS
163	Integrated Power Management of Conventional Units and Industrial Loads in China's Ancillary Services Scheduling. Energies, 2015, 8, 3955-3977.	3.1	11
164	Analysis of power transfer limit considering thermal balance of overhead conductor. IET Generation, Transmission and Distribution, 2015, 9, 2007-2013.	2.5	16
165	A Convex Model of Risk-Based Unit Commitment for Day-Ahead Market Clearing Considering Wind Power Uncertainty. IEEE Transactions on Power Systems, 2015, 30, 1582-1592.	6.5	121
166	A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power. International Journal of Electrical Power and Energy Systems, 2015, 65, 201-209.	5.5	79
167	Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit. Journal of Electrical Engineering and Technology, 2015, 10, 1930-1939.	2.0	1
168	Day-ahead battery scheduling in microgrid considering wind power uncertainty using ordinal optimization. , 2014, , .		6
169	Modeling Conditional Forecast Error for Wind Power in Generation Scheduling. IEEE Transactions on Power Systems, 2014, 29, 1316-1324.	6.5	208
170	Mid-short-term risk assessment of power systems considering impact of external environment. Journal of Modern Power Systems and Clean Energy, 2013, 1, 118-126.	5.4	13
171	A fuzzy bi-objective unit commitment model considering source-grid-load interactions. , 2013, , .		4
172	Planning Pumped Storage Capacity for Wind Power Integration. IEEE Transactions on Sustainable Energy, 2013, 4, 393-401.	8.8	113
173	Rigorous model for evaluating wind power capacity credit. IET Renewable Power Generation, 2013, 7, 504-513.	3.1	25
174	Cramer-Rao Bounds and Coherence Performance Analysis for Next Generation Radar with Pulse Trains. Sensors, 2013, 13, 5347-5367.	3.8	22
175	Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula. Journal of Electrical Engineering and Technology, 2013, 8, 1615-1625.	2.0	29
176	Investigating the impact of demand side management on residential customers. , $2011, \ldots$		24
177	Thermal generation operating cost variations with wind power integration. , 2011, , .		5
178	SIMULATION METHODOLOGY OF MULTIPLE WIND FARMS OPERATION CONSIDERING WIND SPEED CORRELATION. International Journal of Power and Energy Systems, 2010, 30, .	0.2	25