
Dong Yeong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7355690/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5, 4775.	12.8	367
2	Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 1399-1408.	13.7	161
3	Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission. Light: Science and Applications, 2015, 4, e263-e263.	16.6	108
4	Enhanced overall efficiency of GalnN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer. Applied Physics Letters, 2013, 103, .	3.3	60
5	Fundamental Limitations of Wide-Bandgap Semiconductors for Light-Emitting Diodes. ACS Energy Letters, 2018, 3, 655-662.	17.4	48
6	Arrays of Truncated Cone AlGaN Deep-Ultraviolet Light-Emitting Diodes Facilitating Efficient Outcoupling of in-Plane Emission. ACS Photonics, 2016, 3, 2030-2034.	6.6	47
7	An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission. Scientific Reports, 2016, 6, 22537.	3.3	46
8	Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Scientific Reports, 2019, 9, 5736.	3.3	42
9	Threeâ€Dimensional Nanostructured Indiumâ€Tinâ€Oxide Electrodes for Enhanced Performance of Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1301566.	19.5	27
10	Pressure-Dependent Growth of Wafer-Scale Few-layer h-BN by Metal–Organic Chemical Vapor Deposition. Crystal Growth and Design, 2017, 17, 2569-2575.	3.0	21
11	Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Scientific Reports, 2019, 9, 10590.	3.3	21
12	Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition. AIP Advances, 2017, 7, .	1.3	20
13	Correlative Highâ€Resolution Mapping of Strain and Charge Density in a Strained Piezoelectric Multilayer. Advanced Materials Interfaces, 2015, 2, 1400281.	3.7	18
14	Resistive Switching in Few-Layer Hexagonal Boron Nitride Mediated by Defects and Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2020, 12, 46288-46295.	8.0	18
15	Defect-Mediated In-Plane Electrical Conduction in Few-Layer sp2-Hybridized Boron Nitrides. ACS Applied Materials & Interfaces, 2018, 10, 17287-17294.	8.0	10
16	Strong correlation between capacitance and breakdown voltage of GalnN/GaN light-emitting diodes. Electronic Materials Letters, 2014, 10, 1155-1157.	2.2	6
17	Polarization-Engineered High-Efficiency GalnN Light-Emitting Diodes Optimized by Genetic Algorithm. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	6
18	Thermal laser evaporation for the growth of oxide films. APL Materials, 2021, 9, .	5.1	4

Dong Yeong Kim

#	Article	IF	CITATIONS
19	Electron Holography: Correlative Highâ€Resolution Mapping of Strain and Charge Density in a Strained Piezoelectric Multilayer (Adv. Mater. Interfaces 1/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	3
20	Epitaxial film growth by thermal laser evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	3
21	Counter-intuitive junction temperature behavior in AlGaN-based deep-ultraviolet light-emitting diodes. AIP Advances, 2020, 10, 045135.	1.3	2
22	Modulation of hole-injection in GaInN-light emitting triodes and its effect on carrier recombination behavior. AIP Advances, 2015, 5, 107104.	1.3	0
23	U-shape phenomenon in the efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes. , 2015, , .		0
24	Enhanced light extraction efficiency of AlGaN-based deep-ultraviolet light-emitting diodes by utilizing strong sidewall emission. , 2015, , .		0
25	Effects of electrochemical potentiostatic activation on carrier transport in AlGaN-based deep-ultraviolet light-emitting diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 023410.	2.1	0