
Diego P Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7355241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing Materials: Graphene. , 2023, , 367-388.		2
2	Sensing Materials: Electrochemical Sensors Enabled by 3D Printing. , 2023, , 73-88.		2
3	Posttreatment of 3Dâ€printed surfaces for electrochemical applications: A critical review on proposed protocols. Electrochemical Science Advances, 2022, 2, e2100136.	1.2	26
4	Electrochemical sensor for isoniazid detection by using a WS2/CNTs nanocomposite. Sensors and Actuators Reports, 2022, 4, 100073.	2.3	14
5	Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Analytical Chemistry, 2022, 94, 6417-6429.	3.2	72
6	Multifunctional spinel MnCo ₂ O ₄ based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives. Journal of Materials Chemistry A, 2021, 9, 3095-3124.	5.2	88
7	Recent trends and perspectives in electrochemical sensors based on MOF-derived materials. Journal of Materials Chemistry C, 2021, 9, 8718-8745.	2.7	100
8	Feasible strategies to promote the sensing performances of spinel MCo ₂ O ₄ (M) Tj E 2021, 9, 7852-7887.	TQq0 0 0 rg 2.7	BT /Overlock 43
9	Development of conductive inks for electrochemical sensors and biosensors. Microchemical Journal, 2021, 164, 105998.	2.3	81
10	Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Analytica Chimica Acta, 2021, 1159, 338384.	2.6	73
11	Reactive oxygen plasma treatment of 3D-printed carbon electrodes towards high-performance electrochemical sensors. Sensors and Actuators B: Chemical, 2021, 347, 130651.	4.0	28
12	Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chemical Engineering Journal, 2021, 425, 130594.	6.6	41
13	Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Mikrochimica Acta, 2021, 188, 388.	2.5	13
14	NiVCe-Layered Double Hydroxide as Multifunctional Nanomaterials for Energy and Sensor Applications. Frontiers in Materials, 2021, 8, .	1.2	4
15	Improved anodic stripping voltammetric detection of zinc on a disposable screen-printed gold electrode. lonics, 2020, 26, 2611-2621.	1.2	13
16	3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensors and Actuators B: Chemical, 2020, 307, 127621.	4.0	142
17	3D printing pen using conductive filaments to fabricate affordable electrochemical sensors for trace metal monitoring. Journal of Electroanalytical Chemistry, 2020, 876, 114701.	1.9	27
18	3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosensors and Bioelectronics, 2020, 170, 112684.	5.3	78

DIEGO P ROCHA

#	Article	IF	CITATIONS
19	In situ electrochemical exfoliation of embedded graphite to superficial graphene sheets for electroanalytical purposes. Electrochimica Acta, 2020, 354, 136762.	2.6	9
20	3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene. Analytica Chimica Acta, 2020, 1132, 10-19.	2.6	42
21	A multi-pumping flow system for spectrophotometric determination of oxalate in tea. Microchemical Journal, 2020, 157, 104938.	2.3	6
22	Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis. Microchemical Journal, 2020, 157, 105088.	2.3	33
23	Trace manganese detection <i>via</i> differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms. Analyst, The, 2020, 145, 3424-3430.	1.7	32
24	Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochimica Acta, 2020, 335, 135688.	2.6	97
25	Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Analytica Chimica Acta, 2020, 1118, 73-91.	2.6	265
26	Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Analytical Chemistry, 2019, 91, 12844-12851.	3.2	176
27	3Dâ€printed Portable Platform for Mechanized Handling and Injection of Microvolumes Coupled to Electrochemical Detection. Electroanalysis, 2019, 31, 771-777.	1.5	22
28	Nanomaterial-Based Electrochemical Sensors for Environmental and Energy Applications. , 2019, , 197-228.		1
29	Highly sensitive procedure for determination of Cu(II) by GF AAS using single-drop microextraction. Microchemical Journal, 2019, 147, 894-898.	2.3	38
30	Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5–diacetyl–1,4–dihydrolutidine using an unmodified glassy-carbon electrode. Talanta, 2019, 198, 237-241.	2.9	19
31	Solenoid Microâ€pumps: A New Tool for Sample Introduction in Batch Injection Analysis Systems with Electrochemical Detection. Electroanalysis, 2018, 30, 180-186.	1.5	5
32	Batchâ€injection Analysis Better than ever: New Materials for Improved Electrochemical Detection and Onâ€site Applications. Electroanalysis, 2018, 30, 1386-1399.	1.5	59
33	Carbon nanotube/reduced graphene oxide thin-film nanocomposite formed at liquid-liquid interface: Characterization and potential electroanalytical applications. Sensors and Actuators B: Chemical, 2018, 269, 293-303.	4.0	30
34	Chemically versus electrochemically reduced graphene oxide: Improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces. Sensors and Actuators B: Chemical, 2018, 254, 701-708.	4.0	55
35	A flow injection procedure using Layered Double Hydroxide for on line pre-concentration of fluoride. Talanta, 2018, 178, 102-108.	2.9	15
36	Stripping Voltammetric Determination of Mercury in Fish Oil Capsules Using a Screenâ€printed Gold Electrode. Electroanalysis, 2018, 30, 20-23.	1.5	18

DIEGO P ROCHA

#	Article	IF	CITATIONS
37	Forensics in hand: new trends in forensic devices (2013–2017). Analytical Methods, 2018, 10, 5135-5163.	1.3	59
38	Highly sensitive amperometric detection of drugs and antioxidants on non-functionalized multi-walled carbon nanotubes: Effect of metallic impurities?. Electrochimica Acta, 2017, 240, 80-89.	2.6	26
39	Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors. Talanta, 2017, 174, 420-427.	2.9	14
40	Electrochemically Reduced Graphene Oxide for Forensic Electrochemistry: Detection of Cocaine and its Adulterants Paracetamol, Caffeine and Levamisole. Electroanalysis, 2017, 29, 2418-2422.	1.5	24
41	Coordenação de metais a antibióticos como uma estratégia de combate à resistência bacteriana. Quimica Nova, 2011, 34, 111-118.	0.3	40
42	Chemically Reduced Graphene Oxide on Gold Electrodes from Recordable CDs: Characterization and Potential Sensing Applications. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
43	Electroanalytical Method for Determination of Trace Metals in Struvite Using Electrochemically Treated Screen-Printed Gold Electrodes. Journal of the Brazilian Chemical Society, 0, , .	0.6	6
44	ELECTROCHEMICAL DETERMINATION OF 2-NAPHTHYLAMINE IN PERFUME SAMPLES USING BORONDOPED DIAMOND ELECTRODE. Quimica Nova, 0, , .	0.3	0