Wang Yimin

List of Publications by Citations

Source: https://exaly.com/author-pdf/7354846/wang-yimin-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,465 86 163 49 h-index g-index citations papers 6.63 165 10,219 9.1 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
163	Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. <i>Environmental Science & Environmental Scien</i>	10.3	494
162	Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. <i>Environmental Science & Environmental Science</i>	10.3	479
161	Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. <i>Chemosphere</i> , 2013 , 92, 925-32	8.4	404
160	Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. <i>Applied Catalysis B: Environmental</i> , 2013 , 129, 325-332	21.8	332
159	Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. <i>Journal of Hazardous Materials</i> , 2012 , 227-228, 394-401	12.8	270
158	Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	220
157	Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. <i>Bioresource Technology</i> , 2015 , 176, 210-7	11	210
156	Fe3O4@ECD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). <i>Applied Catalysis B: Environmental</i> , 2016 , 188, 113-122	21.8	175
155	Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. <i>Chemical Engineering Journal</i> , 2018 , 348, 526-534	14.7	168
154	Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. <i>Environmental Science & Environmental & En</i>	10.3	144
153	New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. <i>Water Research</i> , 2018 , 142, 208-216	12.5	142
152	Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 1-11	21.8	138
151	Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. <i>Journal of Hazardous Materials</i> , 2016 , 316, 232-41	12.8	133
150	Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. <i>Environmental Science & Environmental Science & E</i>	10.3	132
149	Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. <i>Chemosphere</i> , 2004 , 56, 265-73	8.4	123
148	Transformation of polychlorinated biphenyls by persulfate at ambient temperature. <i>Chemosphere</i> , 2013 , 90, 1573-80	8.4	118
147	Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. <i>Chemosphere</i> , 2005 , 59, 167-75	8.4	108

146	Novel and High-Performance Magnetic Carbon Composite Prepared from Waste Hydrochar for Dye Removal. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 969-977	8.3	106
145	Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 1504-1509	7.5	99
144	Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. <i>Chemosphere</i> , 2005 , 61, 519-27	8.4	99
143	A scientometric review of biochar research in the past 20 years (1998\(\mathbb{Z}\)018). Biochar, 2019 , 1, 23-43	10	96
142	Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: effects of solution ionic strength and composition. <i>Water Research</i> , 2011 , 45, 5905-15	12.5	86
141	Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. <i>Water Research</i> , 2018 , 139, 66-73	12.5	83
140	Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 105	5 7 7-10	5 <mark>8</mark> 8
139	Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study. <i>Chemical Engineering Journal</i> , 2019 , 355, 65-75	14.7	74
138	Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous Carbon for Their Sustainable Application. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 833-840	8.3	72
137	Reductive Hexachloroethane Degradation by SO with Thermal Activation of Persulfate under Anaerobic Conditions. <i>Environmental Science & Environmental </i>	10.3	72
136	Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. <i>Journal of Hazardous Materials</i> , 2015 , 300, 467-474	12.8	71
135	Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. <i>Nanotoxicology</i> , 2017 , 11, 699-709	5.3	67
134	Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. <i>Journal of Soils and Sediments</i> , 2011 , 11, 491-503	3.4	67
133	Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. <i>Chemosphere</i> , 2014 , 107, 274-281	8.4	65
132	Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control. <i>Chemosphere</i> , 2013 , 90, 2326-31	8.4	63
131	Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques. <i>Chemosphere</i> , 2016 , 155, 225-233	8.4	61
130	Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. <i>Chemosphere</i> , 2004 , 57, 1237-44	8.4	60
129	Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. <i>Applied Catalysis B: Environmental</i> , 2019 , 253, 278-285	21.8	58

128	Effect of Organic Matter on Sorption of Zn on Soil: Elucidation by Wien Effect Measurements and EXAFS Spectroscopy. <i>Environmental Science & Exaps Technology</i> , 2016 , 50, 2931-7	10.3	58	
127	Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. <i>Journal of Hazardous Materials</i> , 2014 , 279, 212-9	12.8	57	
126	Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. <i>Environmental Science & Environmental Science & Environmental</i>	1361 ³	57	
125	Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. <i>Journal of Contaminant Hydrology</i> , 2014 , 164, 35-48	3.9	56	
124	Adsorption of diethyl phthalate ester to clay minerals. <i>Chemosphere</i> , 2015 , 119, 690-696	8.4	55	
123	Distribution and Accumulation of Copper and Cadmium in Soil R ice System as Affected by Soil Amendments. <i>Water, Air, and Soil Pollution</i> , 2009 , 196, 29-40	2.6	55	
122	Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: Kinetics, products, and reactive species identification. <i>Chemosphere</i> , 2016 , 148, 68-76	8.4	54	
121	Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. <i>Separation and Purification Technology</i> , 2014 , 123, 106-113	8.3	54	
120	Pilot-scale electrokinetic treatment of a Cu contaminated red soil. <i>Chemosphere</i> , 2006 , 63, 964-71	8.4	52	
119	Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). <i>Journal of Hazardous Materials</i> , 2019 , 362, 311-317	12.8	51	
118	Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. <i>Science of the Total Environment</i> , 2019 , 648, 102-108	10.2	50	
117	Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II). <i>Journal of Hazardous Materials</i> , 2010 , 174, 34-9	12.8	50	
116	Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121345	12.8	49	
115	Production Temperature Effects on the Structure of Hydrochar-Derived Dissolved Organic Matter and Associated Toxicity. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	48	
114	The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. <i>Environmental Science: Nano</i> , 2017 , 4, 919-928	7.1	47	
113	The oxidation and sorption mechanism of Sb on EMnO 2. Chemical Engineering Journal, 2018, 342, 429-4	13 7 4.7	47	
112	Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition. <i>Journal of Colloid and Interface Science</i> , 2011 , 360, 398-407	9.3	47	
111	Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand. <i>Science of the Total Environment</i> , 2017 , 579, 776-785	10.2	46	

(2021-2007)

Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. <i>Chemosphere</i> , 2007 , 67, 1671-6	8.4	46
Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation. <i>Chemical Engineering Journal</i> , 2017 , 323, 84-95	14.7	45
Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Char for Their Potential Application: Influence of Hydrothermal Carbonization Conditions. <i>Energy & Energy & Fuels</i> , 2015 , 29, 5222-5230	4.1	45
Phosphate affects the adsorption of tetracycline on two soils with different characteristics. <i>Geoderma</i> , 2010 , 156, 237-242	6.7	44
Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods. <i>Chemosphere</i> , 2016 , 144, 138-47	8.4	42
Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). <i>Journal of Hydrology</i> , 2014 , 519, 1677-1687	6	42
Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 267, 165-173	5.7	42
Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils. <i>Nature Communications</i> , 2019 , 10, 3775	17.4	41
A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash. <i>Scientific Reports</i> , 2016 , 6, 33630	4.9	40
Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot. <i>Chemosphere</i> , 2014 , 117, 410-8	8.4	39
Facilitated Transport of Copper with Hydroxyapatite Nanoparticles in Saturated Sand. <i>Soil Science Society of America Journal</i> , 2012 , 76, 375-388	2.5	39
A Mechanistic Understanding of Hydrogen Peroxide Decomposition by Vanadium Minerals for Diethyl Phthalate Degradation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	38
Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite. Chemosphere, 2016, 147, 44-51	8.4	38
The degradation of diethyl phthalate by reduced smectite clays and dissolved oxygen. <i>Chemical Engineering Journal</i> , 2019 , 355, 247-254	14.7	38
Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 170-6	12.8	37
Antimony oxidation and sorption behavior on birnessites with different properties (EMnO and triclinic birnessite). <i>Environmental Pollution</i> , 2019 , 246, 990-998	9.3	37
Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation. <i>Environmental Pollution</i> , 2009 , 157, 410-6	9.3	36
A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. <i>Chemical Engineering Journal</i> , 2021 , 403, 126445	14.7	35
	electrical field. Chemosphere, 2007, 67, 1671-6 Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation. Chemical Engineering Journal, 2017, 323, 84-95 Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Char for Their Potential Application: Influence of Hydrothermal Carbonization Conditions. Energy & Description of Potential Application: Influence of Hydrothermal Carbonization Conditions. Energy & Description of Physical Potential Application: Influence of Hydrothermal Carbonization Conditions. Energy & Description of Energy & Description of Energy & Description of Energy & Description Conditions. Energy & Description Conditions. Energy & Description Conditions & Description Condition & Description Co	electrical field. Chemosphere, 2007, 67, 1671-6 Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation. Chemical Engineering Journal, 2017, 323, 84-95 Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Charfor Their Potential Application: Influence of Hydrothermal Carbonization Conditions. Energy & Engineering Journal, 2015, 29, 5222-5230 Phosphate affects the adsorption of tetracycline on two soils with different characteristics. Geoderma, 2010, 156, 237-242 Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods. Chemosphere, 2016, 144, 138-47 Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). Journal of Hydrology, 2014, 519, 1677-1687 Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agriculture, Ecosystems and Environment, 2018, 267, 165-173 Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils. Nature Communications, 2019, 10, 3775 A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash. Scientific Reports, 2016, 6, 33630 Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot. Chemosphere, 2014, 117, 410-8 Facilitated Transport of Copper with Hydroxyapatite Nanoparticles in Saturated Sand. Soil Science Society of America Journal, 2012, 76, 375-388 A Mechanistic Understanding of Hydrogen Peroxide Decomposition by Vanadium Minerals for Diethyl Phthalate Degradation. Environmental Science & Amp; Technology, 2018, 52, 2178-2185 Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite. Chemosphere, 2016, 147, 44-51 The degradation of diethyl, phthalate by reduced smectite clays and dissolved oxygen. Chemical Engineering Journal, 2019, 355, 247-254 Transport of ARS-labeled hydr

92	Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. <i>Journal of Hazardous Materials</i> , 2016 , 308, 21-8	12.8	34
91	Comparison of Persulfate Activation and Fenton Reaction in Remediating an Organophosphorus Pesticides-Polluted Soil. <i>Pedosphere</i> , 2017 , 27, 465-474	5	32
90	Speciation and location of arsenic and antimony in rice samples around antimony mining area. <i>Environmental Pollution</i> , 2019 , 252, 1439-1447	9.3	32
89	Metagenomic analysis exploring microbial assemblages and functional genes potentially involved in di (2-ethylhexyl) phthalate degradation in soil. <i>Science of the Total Environment</i> , 2020 , 715, 137037	10.2	31
88	Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils. <i>Science of the Total Environment</i> , 2018 , 636, 999-1008	10.2	31
87	Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1140-1156	4.3	31
86	Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite. <i>Environmental Progress and Sustainable Energy</i> , 2009 , 29, 233-241	2.5	31
85	TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants. <i>Journal of Soils and Sediments</i> , 2012 , 12, 376-385	3.4	30
84	Synergy between Iron and Selenide on FeSe(111) Surface Driving Peroxymonosulfate Activation for Efficient Degradation of Pollutants. <i>Environmental Science & Environmental Sc</i>	10.3	30
83	Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 457, 58-66	5.1	29
82	Demethanation Trend of Hydrochar Induced by Organic Solvent Washing and Its Influence on Hydrochar Activation. <i>Environmental Science & Environmental </i>	10.3	29
81	Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. <i>Journal of Hazardous Materials</i> , 2007 , 142, 111-7	12.8	28
80	Temperature affects cadmium-induced phytotoxicity involved in subcellular cadmium distribution and oxidative stress in wheat roots. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 2029-35	7	27
79	Effects of clay minerals on diethyl phthalate degradation in Fenton reactions. <i>Chemosphere</i> , 2016 , 165, 52-58	8.4	26
78	Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. <i>Plant and Soil</i> , 2010 , 334, 277-288	4.2	26
77	EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods. <i>Chemosphere</i> , 2020 , 243, 125439	8.4	26
76	Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi. <i>Journal of Hazardous Materials</i> , 2015 , 292, 44-51	12.8	25
75	The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and HO. <i>Journal of Hazardous Materials</i> , 2018 , 357, 483-490	12.8	25

(2021-2019)

74	Interactive effects of rice straw biochar and FAlO on immobilization of Zn. <i>Journal of Hazardous Materials</i> , 2019 , 373, 250-257	12.8	24
73	A QICAR approach for quantifying binding constants for metal-ligand complexes. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 1036-42	7	24
72	Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China. <i>Science of the Total Environment</i> , 2020 , 698, 134326	10.2	24
71	Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. <i>Chemosphere</i> , 2017 , 169, 1-8	8.4	23
7º	Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation. <i>Chemosphere</i> , 2016 , 150, 71-78	8.4	23
69	Mechanism and Implication of the Sorption of Perfluorooctanoic Acid by Varying Soil Size Fractions. Journal of Agricultural and Food Chemistry, 2018 , 66, 11569-11579	5.7	23
68	Hydrochars and phosphate enhancing the transport of nanoparticle silica in saturated sands. <i>Chemosphere</i> , 2017 , 189, 213-223	8.4	22
67	Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles. <i>Environmental Science: Nano</i> , 2018 , 5, 969-979	7.1	21
66	Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. <i>Plant and Soil</i> , 2014 , 384, 201-212	4.2	21
65	Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI). <i>Chemosphere</i> , 2016 , 155, 1-8	8.4	21
64	Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. <i>Science of the Total Environment</i> , 2018 , 621, 160-167	10.2	21
63	Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica. <i>Environmental Pollution</i> , 2017 , 222, 50-57	9.3	20
62	Effects of Fe(II) on Cd(II) immobilization by Mn(III)-rich EMnO2. <i>Chemical Engineering Journal</i> , 2018 , 353, 167-175	14.7	20
61	Functional genomic analysis of phthalate acid ester (PAE) catabolism genes in the versatile PAE-mineralising bacterium Rhodococcus sp. 2G. <i>Science of the Total Environment</i> , 2018 , 640-641, 646-	65 ^{120.2}	20
60	Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. <i>Journal of Soils and Sediments</i> , 2012 , 12, 1371-1379	3.4	20
59	Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings. <i>Environment International</i> , 2005 , 31, 885-90	12.9	20
58	Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121819	12.8	20
57	Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: Metallic active sites vs. reducing sulfur species. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124175	12.8	20

56	CuO@Exyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH. <i>Journal of Hazardous Materials</i> , 2018 , 357, 109-118	12.8	20
55	Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism. <i>Science of the Total Environment</i> , 2020 , 749, 142387	10.2	19
54	Extraction and speciation analysis of roxarsone and its metabolites from soils with different physicochemical properties. <i>Journal of Soils and Sediments</i> , 2016 , 16, 1557-1568	3.4	19
53	Peroxymonosulfate activation by localized electrons of ZnO oxygen vacancies for contaminant degradation. <i>Chemical Engineering Journal</i> , 2021 , 416, 128996	14.7	19
52	Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica. <i>Chemosphere</i> , 2015 , 135, 123-8	8.4	18
51	Sorption of roxarsone onto soils with different physicochemical properties. <i>Chemosphere</i> , 2016 , 159, 103-112	8.4	18
50	Natural degradation of roxarsone in contrasting soils: Degradation kinetics and transformation products. <i>Science of the Total Environment</i> , 2017 , 607-608, 132-140	10.2	18
49	Migration and decomplexation of metal-chelate complexes causing metal accumulation phenomenon after chelate-enhanced electrokinetic remediation. <i>Journal of Hazardous Materials</i> , 2019 , 377, 106-112	12.8	17
48	Determination of Trace Perfluoroalkyl Carboxylic Acids in Edible Crop Matrices: Matrix Effect and Method Development. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 8763-8772	5.7	17
47	Ion exchange membranes enhance the electrokinetic in situ chemical oxidation of PAH-contaminated soil. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121042	12.8	17
46	Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121452	12.8	17
45	Cultivar-Dependent Accumulation and Translocation of Perfluorooctanesulfonate among Lettuce (Lactuca sativa L.) Cultivars Grown on Perfluorooctanesulfonate-Contaminated Soil. <i>Journal of</i> Agricultural and Food Chemistry, 2018 , 66, 13096-13106	5.7	16
44	Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiOlæatalyst. <i>Chemosphere</i> , 2016 , 144, 628-34	8.4	14
43	High retention of silver sulfide nanoparticles in natural soils. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120735	12.8	14
42	Citric Acid-Enhanced Electroremediation of Toxic Metal-Contaminated Dredged Sediments: Effect of Open/Closed Orifice Condition, Electric Potential and Surfactant. <i>Pedosphere</i> , 2018 , 28, 35-43	5	13
41	Efficient transformation of DDT with peroxymonosulfate activation by different crystallographic MnO. <i>Science of the Total Environment</i> , 2021 , 759, 142864	10.2	13
40	Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions. <i>Water Research</i> , 2019 , 165, 114997	12.5	12
39	Adsorption Kinetics of Glyphosate and Copper(II) Alone and Together on Two Types of Soils. <i>Soil Science Society of America Journal</i> , 2009 , 73, 1995-2001	2.5	12

38	Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123557	12.8	12
37	Decarbonylation reaction of saturated and oxidized tar from pyrolysis of low aromaticity biomass boost reduction of hexavalent chromium. <i>Chemical Engineering Journal</i> , 2019 , 360, 1042-1050	14.7	11
36	Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions. <i>Chemosphere</i> , 2019 , 216, 84-93	8.4	11
35	Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. <i>Environmental Pollution</i> , 2018 , 243, 364-373	9.3	11
34	Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics. <i>Chemosphere</i> , 2018 , 199, 76-83	8.4	10
33	Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. <i>Environmental Pollution</i> , 2016 , 219, 210-218	9.3	9
32	Effects of various warming patterns on Cd transfer in soil-rice systems under Free Air Temperature Increase (FATI) conditions. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 168, 80-87	7	9
31	Identifying Plant Stress Responses to Roxarsone in Soybean Root Exudates: New Insights from Two-Dimensional Correlation Spectroscopy. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 53-62	5.7	9
30	Nano-Fe2O3 enhanced photocatalytic degradation of diethyl phthalate ester by citric Acid/UV (300\(\text{MO0}\) nm): A mechanism study. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 360, 78-85	4.7	8
29	Free Cu2+ Ions, Cu Fractionation and Microbial Parameters in Soils from Apple Orchards Following Long-Term Application of Copper Fungicides. <i>Pedosphere</i> , 2011 , 21, 139-145	5	8
28	Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte. <i>Journal of Environmental Sciences</i> , 2004 , 16, 529-32	6.4	8
27	Macroscopic and microscopic investigation of adsorption and precipitation of Zn on Elumina in the absence and presence of As. <i>Chemosphere</i> , 2017 , 178, 309-316	8.4	7
26	Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 15835-43	5.1	7
25	Assessment of the Zn-Co mixtures rhizotoxicity under Ca deficiency: using two conventional mixture models based on the cell membrane surface potential. <i>Chemosphere</i> , 2014 , 112, 232-9	8.4	7
24	Complex Interaction and Adsorption of Glyphosate and Lead in Soil. <i>Soil and Sediment Contamination</i> , 2013 , 22, 72-84	3.2	7
23	Influence of bacterial extracellular polymeric substances on the sorption of Zn on Ealumina: A combination of FTIR and EXAFS studies. <i>Environmental Pollution</i> , 2017 , 220, 997-1004	9.3	7
22	Calcium and magnesium enhance arsenate rhizotoxicity and uptake in Triticum aestivum. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1642-8	3.8	7
21	Bioavailability of Soil Copper from Different Sources: Integrating Chemical Approaches with Biological Indicators. <i>Pedosphere</i> , 2014 , 24, 145-152	5	6

20	Binding energies of monovalent anions with Fe/Al oxides based on ion activity and suspension Wien effect methods. <i>Journal of Soils and Sediments</i> , 2010 , 10, 863-869	3.4	6
19	Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry. <i>Chemosphere</i> , 2019 , 235, 643-650	8.4	5
18	Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. <i>Chemosphere</i> , 2018 , 194, 285-296	8.4	5
17	Long-term dissolution and transformation of ZnO in soils: The roles of soil pH and ZnO particle size. <i>Journal of Hazardous Materials</i> , 2021 , 415, 125604	12.8	5
16	The overlooked oxidative dissolution of silver sulfide nanoparticles by thermal activation of persulfate: Processes, mechanisms, and influencing factors. <i>Science of the Total Environment</i> , 2021 , 760, 144504	10.2	4
15	(Fe3+)-UVC-(aliphatic/phenolic carboxyl acids) systems for diethyl phthalate ester degradation: A density functional theory (DFT) and experimental study. <i>Applied Catalysis A: General</i> , 2018 , 567, 20-27	5.1	4
14	Carbon nitrideBased cuprous catalysts induced nonradical-led oxidation by peroxydisulfate: Role of cuprous and dissolved oxygen. <i>Chemical Engineering Journal</i> , 2021 , 419, 129667	14.7	4
13	Binding and adsorption energy of Cd in soils and its environmental implication for Cd bioavailability. <i>Soil Science Society of America Journal</i> , 2020 , 84, 472-482	2.5	3
12	Mechanism of significant enhancement of VO2-Fenton-like reactions by oxalic acid for diethyl phthalate degradation. <i>Separation and Purification Technology</i> , 2021 , 279, 119671	8.3	3
11	Cotransport of Cu with Graphene Oxide in Saturated Porous Media with Varying Degrees of Geochemical Heterogeneity. <i>Water (Switzerland)</i> , 2020 , 12, 444	3	2
10	Wien effect determination of binding and adsorption energies between positively charged nano-particles and anions. <i>Journal of Soils and Sediments</i> , 2011 , 11, 783-788	3.4	2
9	A novel approach for predicting the uptake and toxicity of metallic and metalloid ions. <i>Plant Signaling and Behavior</i> , 2011 , 6, 461-5	2.5	2
8	Time-dependent evolution of Zn(II) fractions in soils remediated by wheat straw biochar. <i>Science of the Total Environment</i> , 2020 , 717, 137021	10.2	1
7	Wien effect of Cd/Zn on soil clay fraction and their interaction. <i>Geochemical Transactions</i> , 2018 , 19, 5	3	1
6	Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil <i>Environmental Pollution</i> , 2022 , 300, 118954	9.3	1
5	Unraveling the molecular mechanisms of Cd sorption onto MnO-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127157	12.8	1
4	Hydroxyl radicals induced mineralization of organic carbon during oxygenation of ferrous mineral-organic matter associations: Adsorption versus coprecipitation. <i>Science of the Total Environment</i> , 2021 , 816, 151667	10.2	0
3	Oxidative dissolution of SbO mediated by surface Mn redox cycling in oxic aquatic systems <i>Water Research</i> , 2022 , 217, 118403	12.5	O

LIST OF PUBLICATIONS

2	Greater Bioaccessibility of Silver Nanoparticles in Earthworm than in Soils <i>Bulletin of Environmental Contamination and Toxicology</i> , 2022 , 1	2.7	
1	Mechanistic insight into sulfite-enhanced diethyl phthalate degradation by hydrogen atom under UV light. <i>Separation and Purification Technology</i> , 2022 , 295, 121310	8.3	