List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7354625/publications.pdf Version: 2024-02-01

		25034	20961
126	13,720	57	115
papers	citations	h-index	g-index
133	133	133	4940
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An invariant-based elasto-visco-plastic model for unidirectional polymer composites at finite strains. International Journal of Solids and Structures, 2022, 236-237, 111292.	2.7	1
2	In Situ Synchrotron X-ray Microtomography of Progressive Damage in Canted Notched Cross-Ply Composites with Interlaminar Nanoreinforcement. , 2022, , .		1
3	Effects of ply thickness and architecture on the strength of composite sub-structures. Composite Structures, 2021, 256, 113061.	5.8	11
4	Structural Batteries: A Review. Molecules, 2021, 26, 2203.	3.8	36
5	The Latest Trends in Electric Vehicles Batteries. Molecules, 2021, 26, 3188.	3.8	39
6	Modelling damage in multidirectional laminates subjected to multi-axial loading: Ply thickness effects and model assessment. Composite Structures, 2021, 266, 113766.	5.8	12
7	In situ synchrotron computed tomography study of nanoscale interlaminar reinforcement and thin-ply effects on damage progression in composite laminates. Composites Part B: Engineering, 2021, 217, 108623.	12.0	17
8	An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules, 2021, 26, 5226.	3.8	14
9	Optimization of the microstructure of unidirectional hybrid composites under uniaxial tensile loads. Composite Structures, 2020, 235, 111795.	5.8	3
10	New interlaminar features and void distributions in advanced aerospace-grade composites revealed via automated algorithms using micro-computed tomography. Composites Science and Technology, 2020, 193, 108132.	7.8	17
11	Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites. Composites Science and Technology, 2020, 190, 108014.	7.8	51
12	Mesoscale modelling of damage in single- and double-shear composite bolted joints. Composite Structures, 2019, 226, 111210.	5.8	25
13	An invariant based transversely-isotropic constitutive model for unidirectional fibre reinforced composites considering the matrix viscous effects. Mechanics of Materials, 2019, 138, 103146.	3.2	11
14	Mesoscale modelling of damage in half-hole pin bearing composite laminate specimens. Composite Structures, 2019, 214, 191-213.	5.8	17
15	Simulation of failure in laminated polymer composites: Building-block validation. Composite Structures, 2019, 226, 111168.	5.8	28
16	Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading. Composite Structures, 2019, 223, 110892.	5.8	5
17	Static and fatigue interlaminar shear reinforcement in aligned carbon nanotube-reinforced hierarchical advanced composites. Composites Part A: Applied Science and Manufacturing, 2019, 120, 106-115.	7.6	37
18	Analyzing the failure and damage of FRP composite laminates under high strain rates considering visco-plasticity. Engineering Failure Analysis, 2019, 101, 257-273.	4.0	22

#	Article	IF	CITATIONS
19	Effects of local stress fields around broken fibres on the longitudinal failure of composite materials. International Journal of Solids and Structures, 2019, 156-157, 294-305.	2.7	8
20	Simulation of the Mechanical Response of Thin-Ply Composites: From Computational Micro-Mechanics to Structural Analysis. Archives of Computational Methods in Engineering, 2019, 26, 1445-1487.	10.2	46
21	An analytical model to predict stress fields around broken fibres and their effect on the longitudinal failure of hybrid composites. Composite Structures, 2019, 211, 564-576.	5.8	7
22	A dynamic spring element model for the prediction of longitudinal failure of polymer composites. Computational Materials Science, 2019, 160, 42-52.	3.0	19
23	Damage Micro-mechanisms in Notched Hierarchical Nanoengineered Thin-ply Composite Laminates Studied by In Situ Synchrotron X-ray Microtomography. , 2019, , .		2
24	Modelling mechanical lightning loads in carbon fibre-reinforced polymers. International Journal of Solids and Structures, 2019, 162, 217-243.	2.7	27
25	Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image correlation and machine learning. Composite Structures, 2019, 210, 707-714.	5.8	14
26	Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates. Composites Science and Technology, 2018, 166, 160-168.	7.8	64
27	Experimental characterization and constitutive modeling of the non-linear stress–strain behavior of unidirectional carbon–epoxy under high strain rate loading. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	1.7	30
28	Low Temperature and Resin Effects on the Mode I Interlaminar Fracture Toughness in Aeronautical Quality Polymer Composites. Proceedings (mdpi), 2018, 2, .	0.2	2
29	Analysis Models for Polymer Composites Across Different Length Scales. , 2017, , 199-279.		Ο
30	Fracture toughness and crack resistance curves for fiber compressive failure mode in polymer composites under high rate loading. Composite Structures, 2017, 182, 164-175.	5.8	39
31	The effect of through-thickness compressive stress on mode II interlaminar fracture toughness. Composite Structures, 2017, 182, 153-163.	5.8	38
32	3D-reinforcement techniques for co-bonded CFRP/CFRP and CFRP/metal joints: a brief review. Ciência & Tecnologia Dos Materiais, 2017, 29, e102-e107.	0.5	5
33	Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach. Composites Science and Technology, 2017, 150, 205-216.	7.8	58
34	Effective simulation of the mechanics of longitudinal tensile failure of unidirectional polymer composites. International Journal of Fracture, 2017, 208, 269-285.	2.2	26
35	Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics. Composite Structures, 2017, 179, 208-223.	5.8	27
36	Prediction of size effects in open-hole laminates using only the Young's modulus, the strength, and the <mml:math <br="" altimg="si76.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi mathvariant="script">R</mml:mi </mml:mrow></mml:math> -curve of the 0° ply. Composites Part A: Applied Science and Manufacturing, 2017, 101, 306-317.	7.6	24

3

#	Article	IF	CITATIONS
37	Micro-mechanics based pressure dependent failure model for highly cross-linked epoxy resins. Engineering Fracture Mechanics, 2016, 158, 1-12.	4.3	25
38	Measuring the intralaminar crack resistance curve of fibre reinforced composites at extreme temperatures. Composites Part A: Applied Science and Manufacturing, 2016, 91, 145-155.	7.6	13
39	Failure and damage characterization of (±30°) biaxial braided composites under multiaxial stress states. Composites Part A: Applied Science and Manufacturing, 2016, 90, 748-759.	7.6	23
40	Damage analysis of out of plane undulated fiber composites. Composite Structures, 2016, 152, 464-476.	5.8	4
41	Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part II – Numerical analysis and validation. Composite Structures, 2016, 151, 127-141.	5.8	6
42	Mechanics of hybrid polymer composites: analytical and computational study. Computational Mechanics, 2016, 57, 405-421.	4.0	49
43	Preface: special issue of computational mechanics on "Connecting Multiscale Mechanics to Complex Material Designâ€: Computational Mechanics, 2016, 57, 355-357.	4.0	0
44	Hygrothermal effects on the translaminar fracture toughness of cross-ply carbon/epoxy laminates: Failure mechanisms. Composites Science and Technology, 2016, 122, 130-139.	7.8	28
45	Selective ply-level hybridisation for improved notched response of composite laminates. Composite Structures, 2016, 145, 1-14.	5.8	48
46	Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part I – Constitutive model. Composite Structures, 2016, 151, 114-126.	5.8	16
47	Finite-strain laminates: Bending-enhanced hexahedron and delamination. Composite Structures, 2016, 139, 277-290.	5.8	4
48	Physically-sound simulation of low-velocity impact on fiber reinforced laminates. International Journal of Impact Engineering, 2016, 92, 3-17.	5.0	95
49	A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56, 291-315.	4.0	49
50	Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites. Composites Part A: Applied Science and Manufacturing, 2015, 79, 127-137.	7.6	86
51	High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Composite Structures, 2015, 134, 132-141.	5.8	85
52	Three-dimensional invariant-based failure criteria for fibre-reinforced composites. International Journal of Solids and Structures, 2015, 55, 92-107.	2.7	102
53	High strain rate behaviour of 5-harness-satin weave fabric carbon–epoxy composite under compression and combined compression–shear loading. International Journal of Solids and Structures, 2015, 54, 172-182.	2.7	36
54	Comment to the paper â€~Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure' by George J Dvorak and Norman Laws. Journal of Composite Materials, 2014, 48, 1139-1141.	2.4	8

#	Article	IF	CITATIONS
55	Numerical modeling of nonlinearity, plasticity and damage in CFRP-woven composites for crash simulations. Composite Structures, 2014, 115, 75-88.	5.8	24
56	Effects of interply hybridization on the damage resistance and tolerance of composite laminates. Composite Structures, 2014, 108, 319-331.	5.8	55
57	Micro-mechanical analysis of the in situ effect in polymer composite laminates. Composite Structures, 2014, 116, 827-840.	5.8	133
58	Fibre steering for shear-loaded composite panels with cutouts. Journal of Composite Materials, 2014, 48, 1917-1926.	2.4	17
59	Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72, 50-63.	4.7	155
60	Measurement of the compressive crack resistance curve of composites using the size effect law. Composites Part A: Applied Science and Manufacturing, 2014, 56, 300-307.	7.6	62
61	Large damage capability of non-crimp fabric thin-ply laminates. Composites Part A: Applied Science and Manufacturing, 2014, 63, 110-122.	7.6	35
62	Determination of the mode I crack resistance curve of polymer composites using the size-effect law. Engineering Fracture Mechanics, 2014, 118, 49-65.	4.3	81
63	A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Composites Science and Technology, 2013, 76, 69-76.	7.8	67
64	Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52, 931-947.	4.0	79
65	Notched response of non-crimp fabric thin-ply laminates. Composites Science and Technology, 2013, 79, 97-114.	7.8	78
66	Modeling the inelastic deformation and fracture of polymer composites – Part II: Smeared crack model. Mechanics of Materials, 2013, 59, 36-49.	3.2	103
67	Development of a new nonlinear numerical material model for woven composite materials accounting for permanent deformation and damage. Composite Structures, 2013, 106, 601-614.	5.8	32
68	Notched response of non-crimp fabric thin-ply laminates: Analysis methods. Composites Science and Technology, 2013, 88, 165-171.	7.8	40
69	Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I $\hat{a} \in \mathcal{C}$ Constitutive modelling. International Journal of Solids and Structures, 2013, 50, 1897-1905.	2.7	221
70	Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II – Micromechanical analyses. International Journal of Solids and Structures, 2013, 50, 1906-1915.	2.7	200
71	Modeling the inelastic deformation and fracture of polymer composites – Part I: Plasticity model. Mechanics of Materials, 2013, 59, 50-64.	3.2	140
72	Analysis of multistable variable stiffness composite plates. Composite Structures, 2013, 98, 34-46.	5.8	53

#	Article	IF	CITATIONS
73	Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects. Composites Part B: Engineering, 2013, 45, 897-903.	12.0	133
74	Three-dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 2013, 95, 63-79.	5.8	141
75	Size effects on the tensile and compressive failure of notched composite laminates. Composite Structures, 2013, 96, 736-744.	5.8	106
76	Material and structural response of polymer-matrix fibre-reinforced composites. Journal of Composite Materials, 2012, 46, 2313-2341.	2.4	180
77	Numerical simulation of the non-linear deformation of 5-harness satin weaves. Computational Materials Science, 2012, 61, 116-126.	3.0	62
78	A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1219-1225.	7.6	161
79	Influence of geometrical parameters on the elastic response of unidirectional composite materials. Composite Structures, 2012, 94, 3223-3231.	5.8	75
80	Simulation of drop-weight impact and compression after impact tests on composite laminates. Composite Structures, 2012, 94, 3364-3378.	5.8	264
81	High strain rate characterisation of unidirectional carbon–epoxy IM7-8552 in longitudinal compression. Composites Part A: Applied Science and Manufacturing, 2011, 42, 462-470.	7.6	88
82	An efficient design method for multi-material bolted joints used in the railway industry. Composite Structures, 2011, 94, 246-252.	5.8	9
83	Experimental and numerical study of fastener pull-through failure in GFRP laminates. Composite Structures, 2011, 94, 239-245.	5.8	23
84	On the relation between the mode I fracture toughness of a composite laminate and that of a 0° ply: Analytical model and experimental validation. Engineering Fracture Mechanics, 2011, 78, 2535-2546.	4.3	50
85	Effects of ply clustering in laminated composite plates under low-velocity impact loading. Composites Science and Technology, 2011, 71, 805-817.	7.8	159
86	Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination. Mechanics of Materials, 2011, 43, 169-185.	3.2	60
87	Matrix cracking and delamination in laminated composites. Part II: Evolution of crack density and delamination. Mechanics of Materials, 2011, 43, 194-211.	3.2	30
88	IDMEC – Faculdade de Engenharia da Universidade do Porto. International Journal of Structural Integrity, 2010, 1, 161-172.	3.3	0
89	Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor. Composites Science and Technology, 2010, 70, 305-317.	7.8	107
90	Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Composites Science and Technology, 2010, 70, 1986-1993.	7.8	152

#	Article	IF	CITATIONS
91	A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilities. Computers and Structures, 2010, 88, 1092-1109.	4.4	25
92	Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 2010, 92, 1857-1864.	5.8	367
93	Tailoring for strength of composite steered-fibre panels with cutouts. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1760-1767.	7.6	117
94	High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mechanics of Materials, 2010, 42, 1004-1019.	3.2	279
95	Tailoring for Strength of Steered-Fiber Composite Panels with Cutouts. , 2010, , .		4
96	A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. International Journal of Fracture, 2009, 158, 211-223.	2.2	188
97	Low-velocity impact damage on dispersed stacking sequence laminates. Part I: Experiments. Composites Science and Technology, 2009, 69, 926-936.	7.8	162
98	Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Composites Science and Technology, 2009, 69, 937-947.	7.8	287
99	A Theoretical Model to Study the Influence of Tow-drop Areas on the Stiffness and Strength of Variable-stiffness Laminates. Journal of Composite Materials, 2009, 43, 403-425.	2.4	99
100	Hybrid titanium–CFRP laminates for high-performance bolted joints. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1826-1837.	7.6	80
101	Simulation of Low-Velocity Impact Damage on Composite Laminates. , 2009, , .		8
102	Generation of random distribution of fibres in long-fibre reinforced composites. Composites Science and Technology, 2008, 68, 2092-2102.	7.8	269
103	Analysis of morphing, multi stable structures actuated by piezoelectric patches. Computers and Structures, 2008, 86, 347-356.	4.4	115
104	Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates. Computers and Structures, 2008, 86, 897-907.	4.4	177
105	Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements. Journal of Aircraft, 2008, 45, 663-672.	2.4	80
106	A Three-dimensional Damage Model for Transversely Isotropic Composite Laminates. Journal of Composite Materials, 2008, 42, 2717-2745.	2.4	93
107	Simulation of delamination in composites under high-cycle fatigue. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2270-2282.	7.6	312
108	Erratum to "CompTest 2006 special issue― Composites Part A: Applied Science and Manufacturing, 2007, 38, 2382.	7.6	1

#	Article	IF	CITATIONS
109	Prediction of size effects in notched laminates using continuum damage mechanics. Composites Science and Technology, 2007, 67, 2715-2727.	7.8	393
110	Progressive failure analysis of tow-placed, variable-stiffness composite panels. International Journal of Solids and Structures, 2007, 44, 8493-8516.	2.7	142
111	An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 2007, 74, 1665-1682.	4.3	1,212
112	A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials, 2007, 39, 909-919.	3.2	484
113	A continuum damage model for composite laminates: Part I – Constitutive model. Mechanics of Materials, 2007, 39, 897-908.	3.2	620
114	Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Composites Part A: Applied Science and Manufacturing, 2006, 37, 165-176.	7.6	348
115	A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of Materials, 2006, 38, 1072-1089.	3.2	722
116	A design methodology for mechanically fastened joints in laminated composite materials. Composites Science and Technology, 2006, 66, 3004-3020.	7.8	232
117	A simplified method for the impact test of beams using a pseudo-dynamic (PSD) process. Mechanics Research Communications, 2006, 33, 190-205.	1.8	4
118	Numerical simulation of cold working of rivet holes. Finite Elements in Analysis and Design, 2005, 41, 989-1007.	3.2	73
119	Residual stress field and reduction of stress intensity factors in cold-worked holes. Theoretical and Applied Fracture Mechanics, 2005, 44, 168-177.	4.7	19
120	Increasing the efficiency of composite single-shear lap joints using bonded inserts. Composites Part B: Engineering, 2005, 36, 372-383.	12.0	60
121	Failure Criteria for FRP Laminates. Journal of Composite Materials, 2005, 39, 323-345.	2.4	396
122	A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Composites Part A: Applied Science and Manufacturing, 2004, 35, 827-840.	7.6	105
123	Numerical simulation of the crushing process of composite materials. International Journal of Crashworthiness, 2004, 9, 263-276.	1.9	58
124	Analysis of crack propagation in double cantilever beam tests of multidirectional laminates. Mechanics of Materials, 2003, 35, 641-652.	3.2	72
125	Analysis of the Effects of Residual Strains and Defects on Skin/Stiffener Debonding Using Decohesion Elements. , 2003, , .		25
126	Modelling of concrete beams reinforced with FRP re-bars. Composite Structures, 2001, 53, 107-116.	5.8	54