List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735429/publications.pdf Version: 2024-02-01

PONC TSAO

#	Article	IF	CITATIONS
1	Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2010, 2, 1231-1246.	1.7	1,695
2	Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 2016, 8, 33-42.	4.1	976
3	Polyphenolic Profiles in Eight Apple Cultivars Using High-Performance Liquid Chromatography (HPLC). Journal of Agricultural and Food Chemistry, 2003, 51, 6347-6353.	2.4	512
4	Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 1029-1043.	2.4	344
5	Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 2015, 172, 862-872.	4.2	342
6	Which Polyphenolic Compounds Contribute to the Total Antioxidant Activities of Apple?. Journal of Agricultural and Food Chemistry, 2005, 53, 4989-4995.	2.4	279
7	Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 2015, 166, 380-388.	4.2	259
8	Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 2003, 1018, 29-40.	1.8	253
9	Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. Journal of Agricultural and Food Chemistry, 2011, 59, 960-968.	2.4	250
10	Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chemistry, 2014, 147, 42-50.	4.2	245
11	Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 2008, 21, 396-401.	1.9	218
12	Insecticidal Activity of Monoterpenoids to Western Corn Rootworm (Coleoptera: Chrysomelidae), Twospotted Spider Mite (Acari: Tetranychidae), and House Fly (Diptera: Muscidae). Journal of Economic Entomology, 1997, 90, 883-892.	0.8	213
13	Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chemistry, 2012, 130, 928-936.	4.2	200
14	Phytochemicals in quinoa and amaranth grains and their antioxidant, antiâ€inflammatory, and potential health beneficial effects: a review. Molecular Nutrition and Food Research, 2017, 61, 1600767.	1.5	199
15	Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 2012, 46, 250-259.	2.9	198
16	Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. Journal of Experimental Botany, 2008, 59, 2933-2944.	2.4	194
17	Screening and structural characterization of <i>î±</i> -glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS ^{<i>n</i>} and SORI-CID FTICR MS. Journal of the American Society for Mass Spectrometry, 2009, 20, 1496-1503.	1.2	191
18	How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Research International, 2011, 44, 14-22.	2.9	185

#	Article	IF	CITATIONS
19	Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International, 2021, 142, 110189.	2.9	184
20	Evaluation of the Stability and Antioxidant Activity of Nanoencapsulated Resveratrol during in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 12352-12360.	2.4	171
21	Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 2015, 174, 502-508.	4.2	157
22	Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. Journal of Chromatography A, 2006, 1125, 204-210.	1.8	150
23	Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. Journal of Agricultural and Food Chemistry, 2016, 64, 1712-1719.	2.4	146
24	Fatty Acid Profiles, Tocopherol Contents, and Antioxidant Activities of Heartnut (Juglans) Tj ETQq0 0 0 rgBT /O Chemistry, 2007, 55, 1164-1169.	verlock 10 2.4	Tf 50 547 Td 140
25	Separation procedures for naturally occurring antioxidant phytochemicals. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 812, 85-99.	1.2	134
26	Polyphenolic Profiles and Antioxidant Activities of Heartnut (Juglans ailanthifoliaVar. cordiformis) and Persian Walnut (Juglans regiaL.). Journal of Agricultural and Food Chemistry, 2006, 54, 8033-8040.	2.4	129
27	Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis, 2015, 37, 75-81.	1.9	117
28	Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chemistry, 2015, 185, 298-308.	4.2	116
29	Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chemistry, 2012, 133, 1292-1298.	4.2	115
30	Antifungal Activity of Monoterpenoids against Postharvest Pathogens <i>Botrytis cinerea</i> and <i>Monilinia fructicola</i> . Journal of Essential Oil Research, 2000, 12, 113-121.	1.3	111
31	Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. Journal of Functional Foods, 2014, 10, 35-45.	1.6	111
32	Antioxidant activity, mutagenicity/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food and Chemical Toxicology, 2006, 44, 1522-1529.	1.8	105
33	Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. Journal of Agricultural and Food Chemistry, 2019, 67, 6075-6090.	2.4	105
34	Isoflavone Profiles of Red Clovers and Their Distribution in Different Parts Harvested at Different Growing Stages. Journal of Agricultural and Food Chemistry, 2006, 54, 5797-5805.	2.4	103
35	A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science and Technology, 2020, 105, 347-362.	7.8	103
36	Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography. Journal of Chromatography A, 2005, 1063, 161-169.	1.8	99

#	Article	lF	CITATIONS
37	Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry, 2014, 161, 296-304.	4.2	97
38	Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. Journal of Functional Foods, 2017, 38, 602-611.	1.6	93
39	Ergosterol Profiles, Fatty Acid Composition, and Antioxidant Activities of Button Mushrooms as Affected by Tissue Part and Developmental Stage. Journal of Agricultural and Food Chemistry, 2010, 58, 11616-11625.	2.4	92
40	Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. Journal of Nutritional Biochemistry, 2016, 28, 129-139.	1.9	90
41	Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins, 2017, 9, 157.	1.5	90
42	Effects of Hemp (<i>Cannabis sativa</i> L.) Seed Oil Pressâ€Cake and Decaffeinated Green Tea Leaves (<i>Camellia sinensis</i>) on Functional Characteristics of Glutenâ€Free Crackers. Journal of Food Science, 2014, 79, C318-25.	1.5	82
43	Antioxidant Isoflavones in Osage Orange,Maclura pomifera(Raf.) Schneid. Journal of Agricultural and Food Chemistry, 2003, 51, 6445-6451.	2.4	79
44	Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. British Journal of Nutrition, 2014, 111, 1549-1563.	1.2	79
45	Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.). Food Chemistry, 2014, 159, 353-360.	4.2	79
46	Plant growth regulatory effect and insecticidal activity of the extracts of the Tree of Heaven (Ailanthus altissima L.). BMC Ecology, 2002, 2, 1.	3.0	75
47	An Endophyte Constructs Fungicide-Containing Extracellular Barriers for Its Host Plant. Current Biology, 2015, 25, 2570-2576.	1.8	74
48	Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Journal of Agricultural and Food Chemistry, 2016, 64, 1103-1110.	2.4	72
49	Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chemistry, 2018, 249, 66-76.	4.2	71
50	Isolation and characterization of wheat bran starch. Food Research International, 2008, 41, 882-887.	2.9	70
51	Rapid and Efficient Conversion of All- <i>E</i> -astaxanthin to 9 <i>Z</i> - and 13 <i>Z</i> -Isomers and Assessment of Their Stability and Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2017, 65, 818-826.	2.4	70
52	Characterization of Phytochemicals and Antioxidant Activities of a Purple Tomato (<i>Solanum) Tj ETQq0 0 0 rg</i>	3BT /Overlo 2.4	ock 10 Tf 50 1

53	Anti-Inflammatory Effects of Different Astaxanthin Isomers and the Roles of Lipid Transporters in the Cellular Transport of Astaxanthin Isomers in Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2019, 67, 6222-6231.	2.4	69
54	Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines. Food Chemistry, 2012, 132, 508-517.	4.2	66

#	Article	IF	CITATIONS
55	Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chemistry, 2008, 108, 702-710.	4.2	65
56	Antioxidant and anti-inflammatory polyphenols and peptides of common bean (Phaseolus vulga L.) milk and yogurt in Caco-2 and HT-29 cell models. Journal of Functional Foods, 2019, 53, 125-135.	1.6	65
57	Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 10223-10232.	2.4	63
58	Can phytochemical antioxidant rich foods act as anti-cancer agents?. Food Research International, 2011, 44, 2545-2554.	2.9	62
59	Chemical Inhibitors Suggest Endophytic Fungal Paclitaxel Is Derived from Both Mevalonate and Non-mevalonate-like Pathways. Journal of Natural Products, 2011, 74, 2497-2504.	1.5	61
60	Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. Journal of Nutritional Biochemistry, 2016, 28, 61-69.	1.9	58
61	Bioaccessibility, bioavailability, and antiâ€inflammatory effects of anthocyanins from purple root vegetables using monoâ€and coâ€culture cell models. Molecular Nutrition and Food Research, 2017, 61, 1600928.	1.5	58
62	Antioxidant Capacity and Phenolic Content of Selected Strawberry Genotypes. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1777-1781.	0.5	58
63	Detection of saponins in extract of Panax notoginseng by liquid chromatography–electrospray ionisation-mass spectrometry. Analytica Chimica Acta, 2005, 536, 21-28.	2.6	57
64	Tracking isoflavones: From soybean to soy flour, soy protein isolates to functional soy bread. Journal of Functional Foods, 2009, 1, 119-127.	1.6	57
65	Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. Journal of Functional Foods, 2016, 22, 363-375.	1.6	55
66	Separation of geometric isomers of native lutein diesters in marigold (Tagetes erecta L.) by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 2004, 1045, 65-70.	1.8	53
67	Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column. Journal of Chromatography A, 2007, 1148, 38-45.	1.8	53
68	Factors affecting the antioxidant potential and health benefits of plant foods. Canadian Journal of Plant Science, 2012, 92, 1101-1111.	0.3	52
69	Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H2O2-induced cell death in H9c2. Food Chemistry, 2013, 136, 878-888.	4.2	52
70	White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. Journal of Nutritional Biochemistry, 2015, 26, 752-760.	1.9	52
71	Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (Rhus typhina L.) via UPLC–ESI-MS, 1H, 13C, and 2D NMR spectroscopy. Phytochemistry, 2013, 94, 284-293.	1.4	51
72	Micellar Electrokinetic Capillary Electrophoresis for Rapid Analysis of Patulin in Apple Cider. Journal of Agricultural and Food Chemistry, 2000, 48, 5231-5235.	2.4	50

#	Article	IF	CITATIONS
73	5-Hydroxymethyl-2-furfural and Derivatives Formed during Acid Hydrolysis of Conjugated and Bound Phenolics in Plant Foods and the Effects on Phenolic Content and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2014, 62, 4754-4761.	2.4	50
74	Factors Affecting the Dissolution and Degradation of Oriental Mustard-Derived Sinigrin and Allyl Isothiocyanate in Aqueous Media. Journal of Agricultural and Food Chemistry, 2000, 48, 1898-1902.	2.4	49
75	Evaluation of antioxidant activities and chemical characterisation of staghorn sumac fruit (Rhus) Tj ETQq1 1 0.78	34314 rgBT 4.2	/Qyerlock 1
76	Systematic evaluation of pre-HPLC sample processing methods on total and individual isoflavones in soybeans and soy products. Food Research International, 2011, 44, 2425-2434.	2.9	48
77	The glycemic index of pigmented potatoes is related to their polyphenol content. Food and Function, 2014, 5, 909.	2.1	48
78	Free and conjugated phenolic compounds and their antioxidant activities in regular and non-darkening cranberry bean (Phaseolus vulgaris L.) seed coats. Journal of Functional Foods, 2015, 18, 1047-1056.	1.6	47
79	Antioxidant and anti-inflammatory activities of pyranoanthocyanins and other polyphenols from staghorn sumac (Rhus hirta L.) in Caco-2 cell models. Journal of Functional Foods, 2016, 20, 139-147.	1.6	47
80	Direct and Simultaneous Analysis of Sinigrin and Allyl Isothiocyanate in Mustard Samples by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2002, 50, 4749-4753.	2.4	46
81	Exploitation of Polyphenolic Extracts from Grape Marc as Natural Antioxidants by Encapsulation in Lipid-Based Nanodelivery Systems. Food and Bioprocess Technology, 2013, 6, 2609-2620.	2.6	46
82	Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in C57Bl/6 male mice. Journal of Functional Foods, 2017, 38, 663-674.	1.6	46
83	Effect of Domestic Cooking on Carotenoids, Tocopherols, Fatty Acids, Phenolics, and Antioxidant Activities of Lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 2014, 62, 12585-12594.	2.4	45
84	Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. Journal of Functional Foods, 2014, 11, 571-580.	1.6	45
85	Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. American Journal of Physiology - Renal Physiology, 2014, 306, G1042-G1055.	1.6	45
86	Nematicidal Activity of Monoterpenoid Compounds against Economically Important Nematodes in Agriculture. Journal of Essential Oil Research, 2000, 12, 350-354.	1.3	44
87	Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science and Technology, 2021, 116, 954-974.	7.8	44
88	Preparative separation of chromones in plant extract of <i>Saposhnikovia divaricata</i> by highâ€performance counterâ€current chromatography. Journal of Separation Science, 2011, 34, 520-526.	1.3	43
89	lsoflavone, γ-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. Journal of Functional Foods, 2015, 14, 596-604.	1.6	43
90	Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients, 2019, 11, 1769.	1.7	43

RONG TSAO

#	Article	IF	CITATIONS
91	Structural Characteristics and Antioxidant Activities of Oligosaccharides from Longan Fruit Pericarp. Journal of Agricultural and Food Chemistry, 2009, 57, 9293-9298.	2.4	41
92	Effects of cooking on rutin and glutathione concentrations and antioxidant activity of green asparagus (Asparagus officinalis) spears. Journal of Functional Foods, 2015, 12, 342-353.	1.6	41
93	Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. Journal of Functional Foods, 2017, 38, 675-685.	1.6	39
94	Phenolics of Green Pea (<i>Pisum sativum</i> L.) Hulls, Their Plasma and Urinary Metabolites, Bioavailability, and in Vivo Antioxidant Activities in a Rat Model. Journal of Agricultural and Food Chemistry, 2019, 67, 11955-11968.	2.4	39
95	A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chemistry, 2020, 325, 126925.	4.2	37
96	Designer fruits and vegetables with enriched phytochemicals for human health. Canadian Journal of Plant Science, 2006, 86, 773-786.	0.3	36
97	Purification of deoxynivalenol from Fusarium graminearum rice culture and mouldy corn by high-speed counter-current chromatography. Journal of Chromatography A, 2007, 1151, 187-192.	1.8	36
98	Physicochemical Properties and in Vitro Digestibility of Cooked Regular and Nondarkening Cranberry Beans (<i>Phaseolus vulgaris</i> L.) and Their Effects on Bioaccessibility, Phenolic Composition, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 10448-10458.	2.4	36
99	Intestinal Transport of Pure Diester-type Alkaloids from an Aconite Extract across the Caco-2 Cell Monolayer Model. Planta Medica, 2012, 78, 692-697.	0.7	35
100	The phytochemical composition, metabolites, bioavailability and in vivo antioxidant activity of Tetrastigma hemsleyanum leaves in rats. Journal of Functional Foods, 2017, 30, 179-193.	1.6	35
101	Evaluation of nutritional profiles of starch and dry matter from early potato varieties and its estimated glycemic impact. Food Chemistry, 2016, 203, 356-366.	4.2	34
102	Anti-inflammatory Effect and Cellular Uptake Mechanism of Peptides from Common Bean (<i>Phaseolus vulga</i> L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-culture Models. Journal of Agricultural and Food Chemistry, 2019, 67, 8370-8381.	2.4	34
103	Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). Journal of Functional Foods, 2017, 32, 248-255.	1.6	33
104	Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. Journal of Functional Foods, 2017, 35, 635-640.	1.6	33
105	Antiproliferative Activity of Pomiferin in Normal (MCF-10A) and Transformed (MCF-7) Breast Epithelial Cells. Journal of Agricultural and Food Chemistry, 2011, 59, 13328-13336.	2.4	32
106	Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds. Molecules, 2000, 5, 648-654.	1.7	31
107	Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS Omega, 2020, 5, 10782-10793.	1.6	31
108	Influence of Dietary Applied Monoterpenoids and Derivatives on Survival and Growth of the European Corn Borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 1999, 92, 56-67.	0.8	30

#	Article	IF	CITATIONS
109	<i>In vitro</i> antifungal activity and mode of action of selected polyphenolic antioxidants on <i>Botrytis cinerea</i> . Archives of Phytopathology and Plant Protection, 2010, 43, 1564-1578.	0.6	30
110	Chemical Compositions, Antiobesity, and Antioxidant Effects of Proanthocyanidins from Lotus Seed Epicarp and Lotus Seed Pot. Journal of Agricultural and Food Chemistry, 2018, 66, 13492-13502.	2.4	30
111	Studies on the homolytic and heterolytic cleavage of kaempferol and kaempferide glycosides using electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 169-172.	0.7	29
112	Lipids, Tocopherols, and Carotenoids in Leaves of Amaranth and Quinoa Cultivars and a New Approach to Overall Evaluation of Nutritional Quality Traits. Journal of Agricultural and Food Chemistry, 2014, 62, 12610-12619.	2.4	29
113	Interaction of Monoterpenoids, Methyl Jasmonate, and Ca2+ in Controlling Postharvest Brown Rot of Sweet Cherry. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1304-1307.	0.5	29
114	Green Pea (Pisum sativum L.) Hull Polyphenol Extracts Ameliorate DSS-Induced Colitis through Keap1/Nrf2 Pathway and Gut Microbiota Modulation. Foods, 2021, 10, 2765.	1.9	28
115	Purified rutin and rutinâ€rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfateâ€induced colitis. Molecular Nutrition and Food Research, 2016, 60, 2396-2412.	1.5	27
116	EVIDENCE FOR AN ISOBUTYLAMIDE ASSOCIATED WITH HOST-PLANT RESISTANCE TO WESTERN FLOWER THRIPS, Frankliniella occidentalis, IN CHRYSANTHEMUM. Journal of Chemical Ecology, 2005, 31, 103-110.	0.9	26
117	Chinese Sweet Leaf Tea (<i>Rubus suavissimus</i>) Mitigates LPS-Induced Low-Grade Chronic Inflammation and Reduces the Risk of Metabolic Disorders in a C57BL/6J Mouse Model. Journal of Agricultural and Food Chemistry, 2020, 68, 138-146.	2.4	26
118	Glucosinolate aglucones and analogues: insecticidal properties and a QSAR. Pest Management Science, 1998, 54, 35-42.	0.6	24
119	Isobutylamides of Unsaturated Fatty Acids fromChrysanthemummorifoliumAssociated with Host-Plant Resistance against the Western Flower Thrips. Journal of Natural Products, 2003, 66, 1229-1231.	1.5	24
120	The Effect of Anthocyanin-Rich Purple Vegetable Diets on Metabolic Syndrome in Obese Zucker Rats. Journal of Medicinal Food, 2017, 20, 1240-1249.	0.8	23
121	Phenolic Composition and Antioxidant Capacity of Newly Developed Strawberry Lines from British Columbia and Quebec. International Journal of Food Properties, 2011, 14, 59-67.	1.3	22
122	Extraction and isolation of acetylcholinesterase inhibitors from <i>Citrus limon</i> peel using an in vitro method. Journal of Separation Science, 2020, 43, 1531-1543.	1.3	22
123	<i>Lactobacillus pentosus</i> S-PT84 Prevents Low-Grade Chronic Inflammation-Associated Metabolic Disorders in a Lipopolysaccharide and High-Fat Diet C57/BL6J Mouse Model. Journal of Agricultural and Food Chemistry, 2020, 68, 4374-4386.	2.4	22
124	Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? – New insights from a TNF-α-induced Caco-2 cell model. Food Research International, 2021, 139, 109833.	2.9	22
125	Ultrafiltration LC-ESI-MSn screening of 5-lipoxygenase inhibitors from selected Chinese medicinal herbs Saposhnikovia divaricata, Smilax glabra, Pueraria lobata and Carthamus tinctorius. Journal of Functional Foods, 2016, 24, 244-253.	1.6	21
126	Lutein in selected Canadian crops and agri-food processing by-products and purification by high-speed counter-current chromatography. Journal of Chromatography A, 2006, 1112, 202-208.	1.8	20

#	Article	IF	CITATIONS
127	Physicochemical properties and inÂvitro digestibility of potato starch after inclusion with vanillic acid. LWT - Food Science and Technology, 2017, 85, 218-224.	2.5	20
128	LED-Induced Carotenoid Synthesis and Related Gene Expression in Brassica Microgreens. Journal of Agricultural and Food Chemistry, 2021, 69, 4674-4685.	2.4	20
129	Osajin and Pomiferin, Two Isoflavones Purified from Osage Orange Fruits, Tested for Repellency to the Maize Weevil (Coleoptera: Curculionidae). Environmental Entomology, 2000, 29, 1133-1137.	0.7	19
130	Esterification Enhanced Intestinal Absorption of Ginsenoside Rh2 in Caco-2 Cells without Impacts on Its Protective Effects against H ₂ O ₂ -Induced Cell Injury in Human Umbilical Vein Endothelial Cells (HUVECs). Journal of Agricultural and Food Chemistry, 2014, 62, 2096-2103.	2.4	19
131	Ultrafiltration LC-ESI-MSn screening of MMP-2 inhibitors from selected Chinese medicinal herbs Smilax glabra Roxb., Smilax china L. and Saposhnikovia divaricata (Turcz.) Schischk as potential functional food ingredients. Journal of Functional Foods, 2015, 15, 389-395.	1.6	19
132	Amber, red and blue LEDs modulate phenolic contents and antioxidant activities in eight Cruciferous microgreens. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 2020, 11, 95-109.	2.4	19
133	The influence of soil macroinvertebrates on primary biodegradation of starch-containing polyethylene films. Journal of Polymers and the Environment, 1993, 1, 301-306.	0.8	18
134	Naturally occurring cyanohydrins, analogues and derivatives as potential insecticides. Pest Management Science, 2000, 56, 615-617.	1.7	18
135	The phenolic profiles of Radix Tetrastigma after solid phase extraction (SPE) and their antitumor effects and antioxidant activities in H22 tumor-bearing mice. Food and Function, 2017, 8, 4014-4027.	2.1	18
136	Physicochemical and digestion characteristics of flour and starch from eight Canadian red and green lentils. International Journal of Food Science and Technology, 2018, 53, 735-746.	1.3	18
137	Synergistic antioxidant effects of petunidin and lycopene in H9c2 cells submitted to hydrogen peroxide: Role of Akt/Nrf2 pathway. Journal of Food Science, 2020, 85, 1752-1763.	1.5	17
138	Whole Soy Flour Incorporated into a Muffin and Consumed at 2 Doses of Soy Protein Does Not Lower LDL Cholesterol in a Randomized, Double-Blind Controlled Trial of Hypercholesterolemic Adults. Journal of Nutrition, 2015, 145, 2665-2674.	1.3	16
139	LCâ€MS/MS for simultaneous detection and quantification of Amadori compounds in tomato products and dry foods and factors affecting the formation and antioxidant activities. Journal of Food Science, 2020, 85, 1007-1017.	1.5	16
140	<i>In vitro</i> antioxidant synergism and antagonism between food extracts can lead to similar activities in H ₂ O ₂ â€induced cell death, caspaseâ€3 and MMPâ€2 activities in H9c2 cells. Journal of the Science of Food and Agriculture, 2012, 92, 2983-2993.	1.7	15
141	Preparation of 9 <i>Z</i> -β-Carotene and 9 <i>Z</i> -β-Carotene High-Loaded Nanostructured Lipid Carriers: Characterization and Storage Stability. Journal of Agricultural and Food Chemistry, 2020, 68, 13844-13853.	2.4	15
142	Anti-inflammatory effect of lentil hull (Lens culinaris) extract via MAPK/NF-κB signaling pathways and effects of digestive products on intestinal barrier and inflammation in Caco-2 and Raw264.7 co-culture. Journal of Functional Foods, 2022, 92, 105044.	1.6	15
143	Influence of cultivar and year on phytochemical and antioxidant activity of potato (Solanum) Tj ETQq1 1 0.7843	14 rgBT /0 0.3	Overlock 10 T
144	Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed	1.7	14

Proteomic Profiles of Adipose and Liver Tissue Purple Vegetables. Nutrients, 2018, 10, 456.

1.7 14

#	Article	IF	CITATIONS
145	Onâ€line coupling pressurised liquid extraction with twoâ€dimensional counter current chromatography for isolation of natural acetylcholinesterase inhibitors from <i>Astragalus membranaceus</i> . Phytochemical Analysis, 2021, 32, 640-653.	1.2	14
146	Polyphenol Content of Green Pea (<i>Pisum sativum</i> L.) Hull under <i>In Vitro</i> Digestion and Effects of Digestive Products on Anti-Inflammatory Activity and Intestinal Barrier in the Caco-2/Raw264.7 Coculture Model. Journal of Agricultural and Food Chemistry, 2022, 70, 3477-3488.	2.4	14
147	Red-Osier Dogwood Extracts Prevent Inflammatory Responses in Caco-2 Cells and a Caco-2 BBe1/EA.hy926 Cell Co-Culture Model. Antioxidants, 2019, 8, 428.	2.2	13
148	Agronomic Characteristics and Chemical Composition of Newly Developed Day-Neutral Strawberry Lines by Agriculture and Agri-Food Canada. International Journal of Food Properties, 2010, 13, 1234-1243.	1.3	12
149	Effects of Flaxseed and Its Components on Mammary Gland MiRNome: Identification of Potential Biomarkers to Prevent Breast Cancer Development. Nutrients, 2019, 11, 2656.	1.7	12
150	Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chemistry, 2021, 363, 130275.	4.2	12
151	The effects of environment and storage on rutin concentration in two asparagus cultivars grown in southern Ontario. Canadian Journal of Plant Science, 2012, 92, 901-912.	0.3	11
152	Effect of a Short-Time Germination Process on the Nutrient Composition, Microbial Counts and Bread-Making Potential of Whole Flaxseed. Journal of Food Processing and Preservation, 2015, 39, 1574-1586.	0.9	11
153	Synergistic interactions between antioxidants used in food preservation. , 2015, , 335-347.		11
154	Phenolics of Yellow Pea (<i>Pisum sativum</i> L.) Hulls, Their Plasma and Urinary Metabolites, Organ Distribution, and <i>In Vivo</i> Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2021, 69, 5013-5025.	2.4	11
155	Application of the Electronic Nose to the Classification of Resistance to Western Flower Thrips in Chrysanthemums. Journal of Chemical Ecology, 2005, 31, 2439-2450.	0.9	10
156	Genetic variation and heritability of rutin and glutathione concentrations in asparagus spears. Canadian Journal of Plant Science, 2014, 94, 1355-1362.	0.3	9
157	Biomarkers of oxidative stress and cellular-based assays of indirect antioxidant measurement. , 0, , 165-186.		9
158	Lactobacillus pentosus S-PT84 prevents LPS-induced low-grade chronic inflammation in a C57BL/6J mouse model. Journal of Functional Foods, 2019, 62, 103526.	1.6	9
159	Extraction and isolation of potential anti-stroke compounds from black soybean (Glycine max L.) Tj ETQq1 1 0.7	784314 rgl 1.6	3T /Overlock
160	The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars. Journal of the Science of Food and Agriculture, 2018, 98, 4427-4435.	1.7	8
161	Tracking isoflavones in whole soy flour, soy muffins and the plasma of hypercholesterolaemic adults. Journal of Functional Foods, 2016, 24, 420-428.	1.6	7
162	Differential specificities of polyphenol oxidase from lotus seeds (Nelumbo nucifera Gaertn.) toward stereoisomers, (â^')-epicatechin and (+)-catechin: Insights from comparative molecular docking studies. LWT - Food Science and Technology, 2021, 148, 111728.	2.5	7

#	Article	IF	CITATIONS
163	`SJCA38R6A74' (Eden). Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1513-1515.	0.5	7
164	Effect of combined light-emitting diodes on the accumulation of glucosinolates in Brassica microgreens. Food Production Processing and Nutrition, 2021, 3, .	1.1	7
165	Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Critical Reviews in Food Science and Nutrition, 2023, 63, 5388-5413.	5.4	7
166	Lutein: Separation, Antioxidant Activity, and Potential Health Benefits. ACS Symposium Series, 2007, , 352-372.	0.5	6
167	SCREENING AND STRUCTURAL CHARACTERIZATION OF MMP-2 INHIBITOR FROM <i>CARTHAMUS TINCTORIUS</i> L. USING ULTRAFILTRATION LIQUID CHROMATOGRAPHY–MASS SPECTROMETRY. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 2327-2336.	0.5	6
168	Nomenclature and general classification of antioxidant activity/capacity assays. , 0, , 1-19.		6
169	Oriental mustard bran reducesPratylenchus penetranson sweet corn. Canadian Journal of Plant Pathology, 2007, 29, 421-426.	0.8	5
170	Exploration and characterization of bioactive phytochemicals in native Canadian plants for human health. Canadian Journal of Plant Science, 2007, 87, 1045-1053.	0.3	5
171	Natural Antimicrobials from Plant Essential Oils. ACS Symposium Series, 2007, , 364-387.	0.5	5
172	Application of accelerated solvent extraction coupled with online twoâ€dimensional countercurrent chromatography for continuous extraction and separation of bioactive compounds from <i>Citrus limon</i> peel. Journal of Separation Science, 2020, 43, 3793-3805.	1.3	5
173	Anti-Inflammatory Effect and Cellular Transport Mechanism of Phenolics from Common Bean (Phaseolus vulga L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-Culture Models. Journal of Agricultural and Food Chemistry, 2021, 69, 1513-1523.	2.4	5
174	Changes in ascorbate–glutathione pathway enzymes in response toMycosphaerella fragariaeinfection in selected strawberry genotypes. Archives of Phytopathology and Plant Protection, 2011, 44, 712-725.	0.6	4
175	Development of ultrasound-assisted centrifugal extraction and online solvent concentration coupled with parallel countercurrent chromatography for the preparation of purified phytochemicals: Application to Lycium ruthenicum. Industrial Crops and Products, 2021, 162, 113266.	2.5	4
176	Development of ultrasound-assisted mixture extraction and online extraction solution concentration coupled with countercurrent chromatography for the preparation of pure phytochemicals from Phellinus vaninii. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1171, 122619.	1.2	4
177	'Saint-Laurent d'Orle la ns' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 2195-2196.	0.5	4
178	Reprint of "Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris)― Journal of Functional Foods, 2017, 38, 698-705.	1.6	3
179	Carotenoid, Tocopherol, Lignan, Flavonoid, and Phytosterol Compositions of Wheat Grain and Its Fractions. , 0, , 42-53.		2
180	Nutraceutical and Health Properties of Psyllium. , 2012, , 149-163.		2

RONG TSAO

#	Article	IF	CITATIONS
181	PSVIII-12 Comparative characterization of intestinal alkaline phosphatase kinetics in young piglets and human Caco-2 cells. Journal of Animal Science, 2019, 97, 282-283.	0.2	2
182	â€Jeanne d'Orléans' Red Raspberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1283-1285.	0.5	2
183	Synthesis of3H- polyethylene and its use for fate studies on degradable plastics. Journal of Polymers and the Environment, 1997, 5, 119-124.	0.8	1
184	Extraction, Separation, Detection, and Antioxidant Activity of Apple Polyphenols. ACS Symposium Series, 2007, , 302-324.	0.5	1
185	â€~St-Jean d'Orléans' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 168-169.	0.5	1
186	â€~Diva' Apple. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1478-1480.	0.5	1
187	In commemoration of the international year of pulses. Journal of Functional Foods, 2017, 38, 601.	1.6	0
188	Technologies for Improving the Nutritional Quality of Cereals. , 2019, , 19-31.		0
189	PSVI-13 Anti-inflammatory effects of polyphenol-rich red osier dogwood extracts in Caco-2 mono- and Caco-2/EA.hy926 co-culture models. Journal of Animal Science, 2019, 97, 211-212.	0.2	0
190	`Harmonie' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 480-481.	0.5	0
191	Tracking Isoflavones in Whole Soy Flour, Soy Muffins and Plasma after Consumption of Muffins by Healthy Adults. FASEB Journal, 2015, 29, 606.19.	0.2	О