
mohammad Fasihi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353953/publications.pdf Version: 2024-02-01

MOHAMMAD FASIHI

#	Article	IF	CITATIONS
1	Microstructural and Physical Properties of Thermoplastic Corn Starch/Polystyrene Blend Foams Affected by Different Contents and Combinations of Plasticizers. Journal of Polymers and the Environment, 2022, 30, 1491-1501.	2.4	3
2	Curing and thermal degradation reactions of Nano-Alumina filled natural rubber latex foams. Thermochimica Acta, 2022, 707, 179108.	1.2	4
3	Microstructural analysis and multiâ€response optimization of mechanical properties of bulk molding compound. Polymer Composites, 2022, 43, 593-607.	2.3	7
4	Phase morphology and thermomechanical performance of thermoplastic corn starch/polystyrene blends. Industrial Crops and Products, 2022, 176, 114325.	2.5	3
5	The influence of Dunlop and air microbubbling manufacturing methods on the physical, microstructural and mechanical properties of nano-alumina filled natural rubber latex foam. EXPRESS Polymer Letters, 2022, 16, 649-664.	1.1	5
6	Comments on "Essential work of fracture analysis for surface modified carbon fiber/polypropylene composites with different interfacial adhesion―[<i>Polymer Composites 41</i> (9) (2020): 3541–3551]. Polymer Composites, 2022, 43, 1505-1507.	2.3	6
7	Experimental analysis of tensile properties and essential work of fracture of fumed silica filled polypropylene toughened with thermoplastic polyolefin elastomer. Journal of Composite Materials, 2022, 56, 2621-2638.	1.2	8
8	Multi-response optimization of tensile and fracture properties of polypropylene/ethylene-vinyl acetate/exfoliated graphite by the design of experiment. Journal of Elastomers and Plastics, 2022, 54, 1000-1024.	0.7	6
9	Development of a bubble growth model for natural rubberâ€based foams. Polymer Engineering and Science, 2021, 61, 477-488.	1.5	4
10	Experimental Analysis and Optimization of Mechanical and Physical Properties of Light-Weight Bulk Molding Compound by Design of Experiment. Journal of Macromolecular Science - Physics, 2021, 60, 237-256.	0.4	12
11	Flame retardancy effect of phosphorus graphite nanoplatelets on ethyleneâ€vinyl acetate copolymer: Physical blending versus chemical modification. Polymers for Advanced Technologies, 2021, 32, 4296-4305.	1.6	7
12	The effect of resin formulation on the cellular morphology and mechanical properties of phenolic foams. Journal of Applied Polymer Science, 2020, 137, 48331.	1.3	6
13	Curing characteristics and cellular morphology of natural rubber/silica composite foams. Polymer Bulletin, 2020, 77, 3171-3184.	1.7	11
14	Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams. Materials Today Communications, 2020, 25, 101447.	0.9	4
15	A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites. Chinese Journal of Polymer Science (English Edition), 2020, 38, 877-887.	2.0	14
16	Phosphorization of exfoliated graphite for developing flame retardant ethylene vinyl acetate composites. Journal of Materials Research and Technology, 2020, 9, 7341-7353.	2.6	14
17	The role of nanofiller size and polymer chain configuration on the properties of polypropylene/graphite nanoplates composites. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108, 82-91.	2.7	16
18	One-step regulating the microstructure in physical foaming process of polypropylene. Materials and Manufacturing Processes, 2020, 35, 935-939.	2.7	4

MOHAMMAD FASIHI

#	Article	IF	CITATIONS
19	Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents. International Journal of Biological Macromolecules, 2020, 157, 359-367.	3.6	24
20	An experimental study on one-step and two-step foaming of natural rubber/silica nanocomposites. Nanotechnology Reviews, 2020, 9, 427-435.	2.6	21
21	Effect of coupling agent on the morphological characteristics of natural rubber/silica composites foams. E-Polymers, 2019, 19, 430-436.	1.3	14
22	How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller?. Materials and Design, 2019, 181, 108068.	3.3	57
23	Rheological optimization of reactively modified polypropylene to enhance the foam extrusion performance. Materials Research Express, 2019, 6, 105352.	0.8	5
24	Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 2019, 140, 775-781.	3.6	54
25	Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Composites Part B: Engineering, 2019, 173, 106803.	5.9	47
26	Cell structure-impact property relationship of polypropylene/thermoplastic elastomer blend foams. EXPRESS Polymer Letters, 2019, 13, 429-442.	1.1	22
27	Preparation and application of cellulose nano whiskers (CNWs) in engineered cementitious composites. Journal of Building Engineering, 2019, 21, 213-221.	1.6	10
28	Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Applied Clay Science, 2017, 143, 265-272.	2.6	65
29	The effect of graphene oxide nanoâ€platelets on fracture behavior of adhesively bonded joints. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1905-1916.	1.7	41
30	Competitiveness and synergy between three flame retardants in poly(ethylene- co -vinyl acetate). Polymer Degradation and Stability, 2017, 143, 164-175.	2.7	27
31	Nonisothermal crystallization behavior of isotactic polypropylene/ thermoplastic rubber blends. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 951-955.	1.2	4
32	The Effect of Outer Diameter of Multi-Walled Carbon Nanotubes on Fracture Behavior of Epoxy Adhesives. Scientia Iranica, 2017, .	0.3	2
33	The simultaneous effect of nucleating and blowing agents on the cellular structure of polypropylene foamed via the extrusion process. E-Polymers, 2016, 16, 235-241.	1.3	12
34	Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene. Journal of Applied Polymer Science, 2016, 133, .	1.3	43
35	Investigation of material characteristics and processing conditions effects on bubble growth behavior in a physical foaming process. E-Polymers, 2016, 16, 387-394.	1.3	5
36	A comparative study on thermomechanical and rheological characteristics of graphite/polypropylene nanocomposites: Highlighting the role of mixing. Journal of Vinyl and Additive Technology, 2015, 21, 12-17.	1.8	5

MOHAMMAD FASIHI

#	Article	IF	CITATIONS
37	Acrylonitrile–butadiene rubber functionalization for the toughening modification of recycled poly(ethylene terephthalate). Journal of Applied Polymer Science, 2014, 131, .	1.3	12
38	Preparation of highly dispersed expanded graphite/polypropylene nanocomposites via low temperature processing. Journal of Applied Polymer Science, 2013, 130, 1834-1839.	1.3	18
39	Oxygen barrier and mechanical properties of masterbatchâ€based PA6/nanoclay composite films. Journal of Applied Polymer Science, 2012, 125, E2.	1.3	38
40	Evaluation and optimization of the mechanical properties of highly filled PVC/(wood flour) composites by using experimental design. Journal of Vinyl and Additive Technology, 2011, 17, 112-119.	1.8	11
41	Thermal Characteristics, Kinetics and Thermodynamics of Thermal Degradation Reaction, and Hydrophobicity of Corn Starch Affected by Chemical and Physical Modifications. Starch/Staerke, 0, , 2100185.	1.1	4
42	Effect of fumed silica and halloysite nanoparticles on the microstructure, mechanical, and fracture properties of thermoplastic polyolefin elastomer toughened polypropylene. Polymer Composites, 0, , .	2.3	10