Noah J Marcus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353927/publications.pdf

Version: 2024-02-01

331259 344852 1,356 53 21 36 h-index citations g-index papers 53 53 53 1171 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carotid Chemoreceptor Ablation Improves Survival in Heart Failure. Journal of the American College of Cardiology, 2013, 62, 2422-2430.	1.2	167
2	Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. Journal of Physiology, 2014, 592, 391-408.	1.3	137
3	Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: Role of the angiotensin II type 1 receptor. Respiratory Physiology and Neurobiology, 2010, 171, 36-45.	0.7	130
4	Role of the Carotid Body in the Pathophysiology of Heart Failure. Current Hypertension Reports, 2013, 15, 356-362.	1.5	66
5	Neuroinflammation in heart failure: new insights for an old disease. Journal of Physiology, 2020, 598, 33-59.	1.3	62
6	Mechanisms of carotid body chemoreflex dysfunction during heart failure. Experimental Physiology, 2015, 100, 124-129.	0.9	58
7	Xanthine Oxidase Inhibition Attenuates Endothelial Dysfunction Caused by Chronic Intermittent Hypoxia in Rats. Respiration, 2011, 82, 458-467.	1.2	53
8	Potential Role of Autonomic Dysfunction in Covid-19 Morbidity and Mortality. Frontiers in Physiology, 2020, 11, 561749.	1.3	49
9	Inhibition of hydrogen sulfide restores normal breathing stability and improves autonomic control during experimental heart failure. Journal of Applied Physiology, 2013, 114, 1141-1150.	1.2	46
10	Contribution of peripheral and central chemoreceptors to sympathoâ€excitation in heart failure. Journal of Physiology, 2017, 595, 43-51.	1.3	46
11	Simvastatin Treatment Attenuates Increased Respiratory Variability and Apnea/Hypopnea Index in Rats With Chronic Heart Failure. Hypertension, 2014, 63, 1041-1049.	1.3	44
12	Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. Journal of Physiology, 2017, 595, 2479-2495.	1.3	38
13	Effect of AT1 receptor blockade on intermittent hypoxia-induced endothelial dysfunction. Respiratory Physiology and Neurobiology, 2012, 183, 67-74.	0.7	36
14	Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A Perspective from Animal Studies. Advances in Experimental Medicine and Biology, 2015, 860, 167-185.	0.8	35
15	Central role of carotid body chemoreceptors in disordered breathing and cardiorenal dysfunction in chronic heart failure. Frontiers in Physiology, 2014, 5, 438.	1.3	32
16	Time-dependent adaptation in the hemodynamic response to hypoxia. Respiratory Physiology and Neurobiology, 2009, 165, 90-96.	0.7	29
17	Exercise training improves cardiac autonomic control, cardiac function, and arrhythmogenesis in rats with preserved-ejection fraction heart failure. Journal of Applied Physiology, 2017, 123, 567-577.	1.2	29
18	Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure. Scientific Reports, 2017, 7, 8035.	1.6	29

#	Article	IF	CITATIONS
19	Time course of intermittent hypoxia-induced impairments in resistance artery structure and function. Respiratory Physiology and Neurobiology, 2010, 170, 157-163.	0.7	28
20	KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. Journal of Physiology, 2018, 596, 3171-3185.	1.3	24
21	Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BioMed Research International, 2015, 2015, 1-7.	0.9	22
22	Cardiac remodeling and arrhythmogenesis are ameliorated by administration of Cx43 mimetic peptide Gap27 in heart failure rats. Scientific Reports, 2020, 10, 6878.	1.6	22
23	Selective carotid body ablation in experimental heart failure: a new therapeutic tool to improve cardiorespiratory control. Experimental Physiology, 2015, 100, 136-142.	0.9	21
24	Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. Clinical Science, 2019, 133, 393-405.	1.8	20
25	Role of neurotransmitter gases in the control of the carotid body in heart failure. Respiratory Physiology and Neurobiology, 2012, 184, 197-203.	0.7	19
26	Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H259-H266.	1.5	18
27	Heart Failure and Carotid Body Chemoreception. Advances in Experimental Medicine and Biology, 2012, 758, 387-395.	0.8	17
28	Episodic stimulation of central chemoreceptor neurons elicits disordered breathing and autonomic dysfunction in volume overload heart failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L27-L40.	1.3	15
29	Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. Journal of Physiology, 2019, 597, 5799-5820.	1.3	14
30	Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter?. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H464-H474.	1.5	11
31	Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin?. Frontiers in Physiology, 2018, 9, 1440.	1.3	9
32	Inhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure. Hypertension, 2021, 77, 718-728.	1.3	7
33	Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α ₁ -adrenergic receptor. Journal of Applied Physiology, 2016, 120, 334-343.	1.2	6
34	Heart rate variability alterations in infants with spontaneous hypertonia. Pediatric Research, 2019, 86, 77-84.	1.1	6
35	Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Frontiers in Physiology, 2022, 13, 863963.	1.3	2
36	Medullary astrocytes mediate irregular breathing patterns generation in chronic heart failure through purinergic P2X7 receptor signalling. EBioMedicine, 2022, 80, 104044.	2.7	2

#	Article	IF	CITATIONS
37	Reply from Noah J. Marcus, Rodrigo Del Rio and Harold D. Schultz. Journal of Physiology, 2014, 592, 1905-1906.	1.3	1
38	Topical Application of Connexin43 Hemichannel Blocker Reduces Carotid Body-Mediated Chemoreflex Drive in Rats. Advances in Experimental Medicine and Biology, 2018, 1071, 61-68.	0.8	1
39	Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive. Scientific Reports, 2021, 11, 14458.	1.6	1
40	Heart rate and cardiac autonomic responses to concomitant deep breathing, hand grip exercise, and circulatory occlusion in healthy young adult men and women. Biological Research, 2021, 54, 32.	1.5	1
41	Differential effects of chronic intermittent versus continuous hypoxia on cardiovascular function and skeletal muscle resistance arteries. FASEB Journal, 2007, 21, A824.	0.2	1
42	Effect of AT1 receptor blockade on intermittent hypoxiaâ€induced endothelial dysfunction. FASEB Journal, 2010, 24, 1022.7.	0.2	1
43	Carotid Body Denervation Attenuates Oscillations in Respiratory Rate and Sympathetic Nerve Activity, and Decreases Apnea/Hypopnea Index in Congestive Heart Failure. FASEB Journal, 2013, 27, 1137.7.	0.2	1
44	Carotid body ablation in heart failure: A new pathway for rescuing autonomic balance. Autonomic Neuroscience: Basic and Clinical, 2015, 192, 16-17.	1.4	0
45	Aberrant reflex mechanisms contributing to renoâ€vascular hypertension: a pain in the neck?. Journal of Physiology, 2016, 594, 6075-6076.	1.3	0
46	Fat feeding facilitates hot bodies, but is resistance futile?. Journal of Physiology, 2018, 596, 2953-2954.	1.3	0
47	Medullary Astrocytes Mediate Irregular Breathing Patterns Generation in Chronic Heart Failure Through Purinergic P2X7 Receptor Signalling. SSRN Electronic Journal, 0, , .	0.4	0
48	Simvastatin Treatment Attenuates Increased Respiratory Variability and Apnea/Hypopnea Index in Rats with Congestive Heart Failure. FASEB Journal, 2012, 26, lb829.	0.2	0
49	Hydrogen sulfide contributes to the enhanced chemoreflex ventilatory response to acute hypoxia in heart failure rats. FASEB Journal, 2012, 26, 894.20.	0.2	0
50	Carotid body ablation improves survival, breathing disorders and autonomic control in heart failure rats. FASEB Journal, 2013, 27, 699.6.	0.2	0
51	Peripheral Chemoreceptor Ablation Modulates Renal MiRâ€155/KLF4 Expression in Chronic Heart Failure. FASEB Journal, 2018, 32, lb475.	0.2	0
52	Chronic Intermittent Hypoxia is Associated with Sustained Reduction in Renal Blood Flow and Downregulation of Renal KLF2. FASEB Journal, 2019, 33, 748.9.	0.2	0
53	Chronic Intermittent Hypoxia Promotes Glomerular Hyperfiltration, Reductions in Renal Blood Flow, and Upregulation of Renal A2B Receptor Expression. FASEB Journal, 2019, 33, 748.8.	0.2	0