
Anastasia Zerva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Basidiomycetes Wild Strains Grown in Agro-Industrial Residues for Their Anti-Tyrosinase and Antioxidant Potential and for the Production of Biocatalysts. Fermentation, 2021, 7, 19.	1.4	4
2	Discovery of two novel laccase-like multicopper oxidases from Pleurotus citrinopileatus and their application in phenolic oligomer synthesis. Biotechnology for Biofuels, 2021, 14, 83.	6.2	15
3	Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts, 2021, 11, 727.	1.6	5
4	β-Glucosidase and β-Galactosidase-Mediated Transglycosylation of Steviol Glycosides Utilizing Industrial Byproducts. Frontiers in Bioengineering and Biotechnology, 2021, 9, 685099.	2.0	6
5	A novel thermophile \hat{l}^2 -galactosidase from Thermothielavioides terrestris producing galactooligosaccharides from acid whey. New Biotechnology, 2021, 63, 45-53.	2.4	25
6	Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. Bioresource Technology, 2021, 342, 126058.	4.8	22
7	Screening of Recombinant Lignocellulolytic Enzymes Through Rapid Plate Assays. Methods in Molecular Biology, 2021, 2178, 479-503.	0.4	1
8	A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nature Chemical Biology, 2020, 16, 345-350.	3.9	63
9	A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan. Biotechnology for Biofuels, 2020, 13, 142.	6.2	33
10	Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW). Molecules, 2020, 25, 2221.	1.7	22
11	FTacV study of electroactive immobilized enzyme/free substrate reactions: Enzymatic catalysis of epinephrine by a multicopper oxidase from Thermothelomyces thermophila. Bioelectrochemistry, 2020, 134, 107538.	2.4	4
12	Applications of Microbial Laccases: Patent Review of the Past Decade (2009–2019). Catalysts, 2019, 9, 1023.	1.6	65
13	Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. Bioresource Technology, 2019, 279, 362-372.	4.8	29
14	A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. New Biotechnology, 2019, 49, 10-18.	2.4	29
15	Optimization of Transesterification Reactions with CLEA-Immobilized Feruloyl Esterases from Thermothelomyces thermophila and Talaromyces wortmannii. Molecules, 2018, 23, 2403.	1.7	12
16	Biocatalytic Synthesis of Fungal Î ² -Glucans. Catalysts, 2018, 8, 274.	1.6	20
17	Cross-Linked Enzyme Aggregates of Feruloyl Esterase Preparations from Thermothelomyces thermophila and Talaromyces wortmannii. Catalysts, 2018, 8, 208.	1.6	16
18	Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. Journal of Environmental Management, 2017, 203, 791-798.	3.8	42

ANASTASIA ZERVA

#	Article	IF	CITATIONS
19	Valorization of Olive Mill Wastewater for the Production of β-glucans from Selected Basidiomycetes. Waste and Biomass Valorization, 2017, 8, 1721-1731.	1.8	14
20	Kinetic and amperometric study of the Mt PerII peroxidase isolated from the ascomycete fungus Myceliophthora thermophila. Bioelectrochemistry, 2017, 118, 19-24.	2.4	6
21	Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase. Molecules, 2016, 21, 550.	1.7	21
22	Characterization and application of a novel class II thermophilic peroxidase from Myceliophthora thermophila in biosynthesis of polycatechol. Enzyme and Microbial Technology, 2015, 75-76, 49-56.	1.6	12
23	Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresource Technology, 2014, 162, 294-299.	4.8	43
24	Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. Journal of Biotechnology, 2011, 152, 16-23.	1.9	58