Forrest S Gittleson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353352/publications.pdf Version: 2024-02-01

FORDEST S CITTLESON

#	Article	IF	CITATIONS
1	Raman Spectroscopy in Lithium–Oxygen Battery Systems. ChemElectroChem, 2015, 2, 1446-1457.	3.4	123
2	Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nature Communications, 2016, 7, 12925.	12.8	122
3	A high power density miniaturized microbial fuel cell having carbon nanotube anodes. Journal of Power Sources, 2015, 273, 823-830.	7.8	112
4	Oxygen solubility and transport in Li–air battery electrolytes: establishing criteria and strategies for electrolyte design. Energy and Environmental Science, 2017, 10, 1167-1179.	30.8	103
5	Bulk Metallic Glass Micro Fuel Cell. Small, 2013, 9, 2081-2085.	10.0	85
6	Scalable Fabrication of Multifunctional Freestanding Carbon Nanotube/Polymer Composite Thin Films for Energy Conversion. ACS Nano, 2012, 6, 1347-1356.	14.6	84
7	A Mesoporous Catalytic Membrane Architecture for Lithium–Oxygen Battery Systems. Nano Letters, 2015, 15, 434-441.	9.1	78
8	Pd–Ni–Cu–P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 11248-11255.	7.1	75
9	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	21.0	71
10	Operando Observation of the Gold–Electrolyte Interface in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19017-19025.	8.0	70
11	Catalyst and electrolyte synergy in Li–O2 batteries. Physical Chemistry Chemical Physics, 2014, 16, 3230.	2.8	67
12	Non-Faradaic Li ⁺ Migration and Chemical Coordination across Solid-State Battery Interfaces. Nano Letters, 2017, 17, 6974-6982.	9.1	58
13	Ultrathin Nanotube/Nanowire Electrodes by Spin–Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage. ACS Nano, 2015, 9, 10005-10017.	14.6	55
14	Improving the Assembly Speed, Quality, and Tunability of Thin Conductive Multilayers. ACS Nano, 2012, 6, 3703-3711.	14.6	53
15	Hydrogen Production from Methanol over Gold Supported on ZnO and CeO ₂ Nanoshapes. Journal of Physical Chemistry C, 2011, 115, 1261-1268.	3.1	47
16	Pt and Pd catalyzed oxidation of Li ₂ O ₂ and DMSO during Li–O ₂ battery charging. Chemical Communications, 2016, 52, 6605-6608.	4.1	45
17	Towards controlling the reversibility of anionic redox in transition metal oxides for high-energy Li-ion positive electrodes. Energy and Environmental Science, 2021, 14, 2322-2334.	30.8	41
18	Enhanced photoelectrochemical and sensing performance of novel TiO2 arrays to H2O2 detection. Sensors and Actuators B: Chemical, 2015, 211, 111-115.	7.8	29

Forrest S Gittleson

#	Article	IF	CITATIONS
19	Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chemical Communications, 2017, 53, 8288-8291.	4.1	27
20	A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning. Nano Letters, 2016, 16, 4799-4806.	9.1	25
21	Polymer coating of vanadium oxide nanowires to improve cathodic capacity in lithium batteries. Journal of Materials Chemistry A, 2013, 1, 7979.	10.3	21
22	Nickel and Cobalt Oxidation State Evolution at Ni-Rich NMC Cathode Surfaces during Treatment. Journal of Physical Chemistry C, 2020, 124, 16508-16514.	3.1	17
23	Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55865-55875.	8.0	14
24	Enhanced Cycling of Ni-Rich Positive Electrodes by Fluorine Modification. Journal of the Electrochemical Society, 2021, 168, 060538.	2.9	10
25	Correlating structure and transport behavior in Li ⁺ and O ₂ containing pyrrolidinium ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 17176-17189.	2.8	8
26	Stratified rod network model of electrical conductance in ultrathin polymer–carbon nanotube multilayers. Physical Review B, 2013, 87, .	3.2	7
27	Fuel Cells: Bulk Metallic Glass Micro Fuel Cell (Small 12/2013). Small, 2013, 9, 2026-2026.	10.0	1
28	Carbon nanotube based anodes in a miniaturized microbial fuel cell (MFC) towards high power density and efficiency. , 2012, , .		0
29	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 1902-1902.	21.0	0
30	Lithium-enriched graphite anode surfaces investigated using nuclear reaction analysis. Chemical Communications, 2020, 56, 14665-14668.	4.1	0