Helena Tlaskalova-Hogenova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353147/publications.pdf

Version: 2024-02-01

71 papers 6,111 citations

39 h-index 91828 69 g-index

99 all docs 99 docs citations 99 times ranked

8789 citing authors

#	Article	IF	CITATIONS
1	NMR- and MS-Based Untargeted Metabolomic Study of Stool and Serum Samples from Patients with Anorexia Nervosa. Journal of Proteome Research, 2022, 21, 778-787.	1.8	6
2	Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium animalis Subsp. lactis BB-12 and Its Impact on Infection with Salmonella Typhimurium. Biomedicines, 2021, 9, 183.	1.4	6
3	Gut Microbiota and NAFLD: Pathogenetic Mechanisms, Microbiota Signatures, and Therapeutic Interventions. Microorganisms, 2021, 9, 957.	1.6	81
4	Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Frontiers in Endocrinology, 2021, 12, 613983.	1.5	18
5	Altered Serum Immunological and Biochemical Parameters and Microbiota Composition in Patients With AN During Realimentation. Frontiers in Nutrition, 2021, 8, 680870.	1.6	11
6	Editorial: Employing Experimental Gnotobiotic Models to Decipher the Host-Microbiota Cross-Talk in Health and Disease. Frontiers in Immunology, 2021, 12, 729052.	2.2	0
7	The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes, 2021, 13, 1-25.	4.3	58
8	Anorexia nervosa: Gut microbiota-immune-brain interactions. Clinical Nutrition, 2020, 39, 676-684.	2.3	66
9	Immunomodulatory Components of Human Colostrum and Milk. Nestle Nutrition Institute Workshop Series, 2020, 94, 38-47.	1.5	4
10	Urinary I-FABP, L-FABP, TFF-3, and SAA Can Diagnose and Predict the Disease Course in Necrotizing Enterocolitis at the Early Stage of Disease. Journal of Immunology Research, 2020, 2020, 1-10.	0.9	24
11	Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells, 2019, 8, 719.	1.8	31
12	Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms, 2019, 7, 338.	1.6	56
13	Crucial Role of Microbiota in Experimental Psoriasis Revealed by a Gnotobiotic Mouse Model. Frontiers in Microbiology, 2019, 10, 236.	1.5	48
14	Diet Rich in Animal Protein Promotes Pro-inflammatory Macrophage Response and Exacerbates Colitis in Mice. Frontiers in Immunology, 2019, 10, 919.	2.2	73
15	Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-occurrence of Fungal and Bacterial Communities. Frontiers in Microbiology, 2019, 10, 438.	1.5	72
16	Unique Gene Expression Signatures in the Intestinal Mucosa and Organoids Derived from Germ-Free and Monoassociated Mice. International Journal of Molecular Sciences, 2019, 20, 1581.	1.8	11
17	The role of gut microbiota in intestinal and liver diseases. Laboratory Animals, 2019, 53, 271-280.	0.5	19
18	Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Frontiers in Microbiology, 2018, 9, 774.	1.5	49

#	Article	IF	Citations
19	Celiac Disease and Liver Disorders: From Putative Pathogenesis to Clinical Implications. Nutrients, 2018, 10, 892.	1.7	39
20	Effect of Lactobacillus casei on the Pharmacokinetics of Amiodarone in Male Wistar Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 29-36.	0.6	13
21	Intestinal Microbiota: Facts and Fiction. Digestive Diseases, 2017, 35, 139-147.	0.8	28
22	The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis. Journal of Immunology Research, 2016, 2016, 1-11.	0.9	56
23	Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease. Journal of Immunology Research, 2016, 2016, 1-8.	0.9	21
24	Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response. PLoS ONE, 2016, 11, e0159539.	1.1	118
25	Anti-calreticulin antibodies and calreticulin in sera of patients diagnosed with dilated or hypertrophic cardiomyopathy. Autoimmunity, 2016, 49, 554-562.	1.2	4
26	Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cellular and Molecular Immunology, 2016, 13, 251-262.	4.8	125
27	Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathogens, 2015, 7, 32.	1.6	43
28	High Prevalence of Neutrophil Cytoplasmic Autoantibodies in Infants with Food Protein-Induced Proctitis/Proctocolitis: Autoimmunity Involvement?. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	4
29	The effect of probiotic Escherichia coli strain Nissle 1917 lipopolysaccharide on the 5-aminosalicylic acid transepithelial transport across Caco-2 cell monolayers. General Physiology and Biophysics, 2014, 32, 371-380.	0.4	1
30	Microbiome and Colorectal Carcinoma. Cancer Journal (Sudbury, Mass), 2014, 20, 217-224.	1.0	49
31	Administration of a Probiotic Can Change Drug Pharmacokinetics: Effect of E. coli Nissle 1917 on Amidarone Absorption in Rats. PLoS ONE, 2014, 9, e87150.	1.1	72
32	Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. Apmis, 2013, 121, 403-421.	0.9	25
33	Troy, a Tumor Necrosis Factor Receptor Family Member, Interacts With Lgr5 to Inhibit Wnt Signaling in Intestinal Stem Cells. Gastroenterology, 2013, 144, 381-391.	0.6	94
34	Altered Gut Microbiota Promotes Colitis-Associated Cancer in IL-1 Receptor–Associated Kinase M–Deficient Mice. Inflammatory Bowel Diseases, 2013, 19, 1266-1277.	0.9	82
35	Colostrum of Healthy Mothers Contains Broad Spectrum of Secretory IgA Autoantibodies. Journal of Clinical Immunology, 2012, 32, 1372-1380.	2.0	18
36	Patterns of Early Gut Colonization Shape Future Immune Responses of the Host. PLoS ONE, 2012, 7, e34043.	1.1	244

#	Article	IF	CITATIONS
37	Celiac disease markers in patients with liver diseases: A single center large scale screening study. World Journal of Gastroenterology, 2012, 18, 6255.	1.4	23
38	Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment. PLoS ONE, 2011, 6, e27961.	1.1	164
39	The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular and Molecular Immunology, 2011, 8, 110-120.	4.8	594
40	Safety and efficacy of the immunosuppressive agent 6-tioguanine in murine model of acute and chronic colitis. BMC Gastroenterology, 2011, 11, 47.	0.8	13
41	Negative regulation of Tollâ€like receptor signaling plays an essential role in homeostasis of the intestine. European Journal of Immunology, 2011, 41, 182-194.	1.6	71
42	A subset of human pancreatic beta cells express functional CD14 receptors: a signaling pathway for beta cellâ \in related glycolipids, sulfatide and $\hat{l}^2\hat{a}\in$ galactosylceramide. Diabetes/Metabolism Research and Reviews, 2010, 26, 656-667.	1.7	20
43	Absence of Microbiota (Germ-Free Conditions) Accelerates the Atherosclerosis in ApoE-Deficient Mice Fed Standard Low Cholesterol Diet. Journal of Atherosclerosis and Thrombosis, 2010, 17, 796-804.	0.9	135
44	Nod2 is required for the regulation of commensal microbiota in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15813-15818.	3.3	504
45	Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD?. Inflammation Research, 2009, 58, 503-512.	1.6	35
46	Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. Journal of Immunotoxicology, 2009, 6, 217-226.	0.9	18
47	Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunology, 2008, 9, 65.	0.9	177
48	Expression of Toll-like Receptor 2 (TLR2), TLR4, and CD14 in Biopsy Samples of Patients With Inflammatory Bowel Diseases: Upregulated Expression of TLR2 in Terminal Ileum of Patients With Ulcerative Colitis. Journal of Histochemistry and Cytochemistry, 2008, 56, 267-274.	1.3	138
49	Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. International Journal of Oncology, 2008, , .	1.4	55
50	Cytokine Profiling in Human Colostrum and Milk by Protein Array. Clinical Chemistry, 2007, 53, 955-962.	1.5	71
51	The effect of weaning on the clonality of $\hat{l}\pm\hat{l}^2$ T-cell receptor T cells in the intestine of GF and SPF mice. Developmental and Comparative Immunology, 2007, 31, 606-617.	1.0	14
52	Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflammatory Bowel Diseases, 2007, 13, 1202-1211.	0.9	177
53	Gliadin Peptides Activate Blood Monocytes from Patients with Celiac Disease. Journal of Clinical Immunology, 2007, 27, 201-209.	2.0	88
54	Differential Activity of IL-12 and IL-23 in Mucosal and Systemic Innate Immune Pathology. Immunity, 2006, 25, 309-318.	6.6	615

#	Article	IF	Citations
55	Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse. Immunology, 2006, 119, 470-478.	2.0	87
56	Effect of bacterial monoassociation on brush-border enzyme activities in ex-germ-free piglets: comparison of commensal and pathogenic Escherichia coli strains. Microbes and Infection, 2006, 8, 2629-2639.	1.0	38
57	Involvement of Innate Immunity in the Development of Inflammatory and Autoimmune Diseases. Annals of the New York Academy of Sciences, 2005, 1051, 787-798.	1.8	76
58	Gliadin Fragments Induce Phenotypic and Functional Maturation of Human Dendritic Cells. Journal of Immunology, 2005, 175, 7038-7045.	0.4	94
59	Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunology Letters, 2004, 93, 97-108.	1.1	606
60	Gliadin stimulates human monocytes to production of IL-8 and TNF-α through a mechanism involving NF-κB. FEBS Letters, 2004, 571, 81-85.	1.3	83
61	Epitopes of calreticulin recognised by IgA autoantibodies from patients with hepatic and coeliac disease. Journal of Autoimmunity, 2003, 21, 383-392.	3.0	19
62	Oral Administration of Probiotic <i>Escherichia coli</i> after Birth Reduces Frequency of Allergies and Repeated Infections Later in Life (after 10 and 20 Years). International Archives of Allergy and Immunology, 2003, 131, 209-211.	0.9	134
63	Mucosal Immunity: Its Role in Defense and Allergy. International Archives of Allergy and Immunology, 2002, 128, 77-89.	0.9	92
64	Monitoring ofin vitrodeamidation of gliadin peptic fragment by mass spectrometry may reflect one of the molecular mechanisms taking place in celiac disease development. Journal of Mass Spectrometry, 2002, 37, 507-511.	0.7	11
65	Serologic Markers of Untreated Celiac Disease in Libyan Children: Antigliadin, Antitransglutaminase, Antiendomysial, and Anticalreticulin Antibodies. Journal of Pediatric Gastroenterology and Nutrition, 2001, 33, 276-282.	0.9	17
66	Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. Journal of Leukocyte Biology, 2000, 67, 312-318.	1.5	32
67	Detection of ICAM-1 in experimentally induced colitis of ICAM-1-deficient and wild-type mice: an immunohistochemical study. The Histochemical Journal, 2000, 32, 703-709.	0.6	11
68	Gluten-free diet prevents diabetes in NOD mice. Diabetes/Metabolism Research and Reviews, 1999, 15, 323-327.	1.7	140
69	Gluten-free diet prevents diabetes in NOD mice. , 1999, 15, 323.		5
70	Anti-gliadin Antibodies in Patients with Celiac Disease Cross-react with Enterocytes and Human Calreticulin. Clinical Immunology and Immunopathology, 1997, 85, 289-296.	2.1	39
71	The Antibody Response in Breast-Fed and Non-Breast-Fed Infants after Artificial Colonization of the Intestine with Escherichia coli 083. Pediatric Research, 1991, 29, 396-399.	1.1	45