Zhu Meifang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7352666/publications.pdf Version: 2024-02-01

ΖΗΠ ΜΕΙΕΛΝΟ

#	Article	IF	CITATIONS
1	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	47.7	2,379
2	Hydrophilic Cu ₉ S ₅ Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells <i>in Vivo</i> . ACS Nano, 2011, 5, 9761-9771.	14.6	1,155
3	Hydrophilic Flowerâ€Like CuS Superstructures as an Efficient 980 nm Laserâ€Driven Photothermal Agent for Ablation of Cancer Cells. Advanced Materials, 2011, 23, 3542-3547.	21.0	760
4	Ultrathin PEGylated W ₁₈ O ₄₉ Nanowires as a New 980 nm‣aserâ€Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced Materials, 2013, 25, 2095-2100.	21.0	370
5	Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1, e1500533.	10.3	312
6	Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science, 2005, 45, 704-709.	3.1	301
7	Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 2015, 14, 226-235.	16.0	287
8	Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. Journal of Power Sources, 2016, 306, 481-488.	7.8	246
9	Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon, 2017, 113, 151-158.	10.3	243
10	Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald–Hartwig Coupling. Advanced Materials, 2018, 30, e1705710.	21.0	239
11	NIRâ€Laserâ€Switched In Vivo Smart Nanocapsules for Synergic Photothermal and Chemotherapy of Tumors. Advanced Materials, 2016, 28, 245-253.	21.0	226
12	Sheath-run artificial muscles. Science, 2019, 365, 150-155.	12.6	218
13	High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer, 2006, 47, 1-5.	3.8	217
14	Hierarchical Photothermal Fabrics with Low Evaporation Enthalpy as Heliotropic Evaporators for Efficient, Continuous, Salt-Free Desalination. ACS Nano, 2021, 15, 13007-13018.	14.6	191
15	Continuously Producing Watersteam and Concentrated Brine from Seawater by Hanging Photothermal Fabrics under Sunlight. Advanced Functional Materials, 2019, 29, 1905485.	14.9	178
16	Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater. ACS Applied Materials & amp; Interfaces, 2019, 11, 35005-35014.	8.0	175
17	Encapsulation of Amoxicillin within Laponite-Doped Poly(lactic- <i>co</i> -glycolic acid) Nanofibers: Preparation, Characterization, and Antibacterial Activity. ACS Applied Materials & amp; Interfaces, 2012, 4, 6393-6401.	8.0	174
18	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	8.3	174

Zhu Meifang

#	Article	IF	CITATIONS
19	Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy, 2015, 15, 642-653.	16.0	172
20	Superhydrophobic surface directly created by electrospinning based on hydrophilic material. Journal of Materials Science, 2006, 41, 3793-3797.	3.7	163
21	A Novel Highly Resilient Nanocomposite Hydrogel with Low Hysteresis and Ultrahigh Elongation. Macromolecular Rapid Communications, 2006, 27, 1023-1028.	3.9	160
22	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	12.8	159
23	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	7.6	157
24	Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer, 2008, 49, 2755-2761.	3.8	150
25	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497.	21.0	147
26	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	7.8	147
27	Progress and Perspective of Antiviral Protective Material. Advanced Fiber Materials, 2020, 2, 123-139.	16.1	146
28	Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon, 2018, 127, 218-227.	10.3	143
29	Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties. ACS Applied Materials & Interfaces, 2020, 12, 3068-3079.	8.0	140
30	Facile Fabrication of Uniform Coreâ^'Shell Structured Carbon Nanotubeâ^'Polyaniline Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 5502-5507.	3.1	128
31	Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polymer Degradation and Stability, 2009, 94, 18-24.	5.8	127
32	Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide. Scientific Reports, 2015, 5, 13942.	3.3	123
33	Inorganic Fillers for Dental Resin Composites: Present and Future. ACS Biomaterials Science and Engineering, 2016, 2, 1-11.	5.2	121
34	Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 14622-14627.	8.0	117
35	A Route Toward Smart System Integration: From Fiber Design to Device Construction. Advanced Materials, 2020, 32, e1902301.	21.0	116
36	Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials, 2018, 161, 279-291.	11.4	113

#	Article	IF	CITATIONS
37	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	10.2	113
38	Mechanically Strong and Multifunctional Hybrid Hydrogels with Ultrahigh Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2104536.	14.9	113
39	Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route. Journal of Membrane Science, 2010, 356, 110-116.	8.2	111
40	"Stiff–Soft―Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance. Advanced Functional Materials, 2019, 29, 1806407.	14.9	111
41	Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061.	38.1	108
42	One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon, 2011, 49, 47-53.	10.3	107
43	Efficient Extraction of Cellulose Nanocrystals through Hydrochloric Acid Hydrolysis Catalyzed by Inorganic Chlorides under Hydrothermal Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 4656-4664.	6.7	106
44	Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. Journal of Power Sources, 2016, 319, 271-280.	7.8	105
45	Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon, 2018, 140, 1-9.	10.3	104
46	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	30.8	104
47	Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy, 2019, 58, 375-383.	16.0	103
48	Ionic Liquidâ€Assisted Synthesis of TiO ₂ –Carbon Hybrid Nanostructures for Lithiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 1338-1346.	14.9	97
49	Near-Infrared-Triggered <i>in Situ</i> Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS Nano, 2018, 12, 9412-9422.	14.6	95
50	Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polymer Chemistry, 2013, 4, 4412.	3.9	93
51	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	2.9	93
52	Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers, 2016, 8, 273.	4.5	87
53	Design and Synthesis of "Allâ€inâ€One―Multifunctional FeS ₂ Nanoparticles for Magnetic Resonance and Nearâ€infrared Imaging Guided Photothermal Therapy of Tumors. Advanced Functional Materials, 2016, 26, 8231-8242.	14.9	87
54	Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid and Polymer Science, 2011, 289, 1005-1014.	2.1	86

#	Article	IF	CITATIONS
55	Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceramics International, 2020, 46, 11874-11881.	4.8	86
56	Nanoparticle–Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromolecular Rapid Communications, 2018, 39, e1800337.	3.9	85
57	Synthesis, Self-assembly, and Crystal Structure of a Shape-Persistent Polyhedral-Oligosilsesquioxane-Nanoparticle-Tethered Perylene Diimide. Journal of Physical Chemistry B, 2010, 114, 4802-4810.	2.6	83
58	Dynamically tuning near-infrared-induced photothermal performances of TiO ₂ nanocrystals by Nb doping for imaging-guided photothermal therapy of tumors. Nanoscale, 2017, 9, 9148-9159.	5.6	83
59	Low cost carbon fibers from bio-renewable Lignin/Poly(lactic acid) (PLA) blends. Composites Science and Technology, 2015, 119, 20-25.	7.8	81
60	Preparation of TiO ₂ /Bi ₂ WO ₆ nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode. Environmental Science: Nano, 2018, 5, 327-337.	4.3	80
61	Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. Advanced Functional Materials, 2021, 31, 2009349.	14.9	80
62	Characteristic Swelling–Deswelling of Polymer/Clay Nanocomposite Gels. Macromolecules, 2011, 44, 8516-8526.	4.8	79
63	Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. Journal of Dentistry, 2019, 80, 23-29.	4.1	78
64	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochimica Acta, 2017, 247, 400-409.	5.2	76
65	Unzipped Carbon Nanotube/Graphene Hybrid Fiber with Less "Dead Volume―for Ultrahigh Volumetric Energy Density Supercapacitors. Advanced Functional Materials, 2021, 31, 2100195.	14.9	76
66	Study on Phaseâ€Change Characteristics of PETâ€PEG Copolymers. Journal of Macromolecular Science - Physics, 2006, 45, 615-621.	1.0	74
67	Multi-functional and highly conductive textiles with ultra-high durability through †̃green' fabrication process. Chemical Engineering Journal, 2021, 406, 127140.	12.7	72
68	Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sensors and Actuators B: Chemical, 2011, 156, 63-70.	7.8	71
69	Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. Journal of Materials Chemistry, 2009, 19, 7340.	6.7	68
70	Programmable responsive shaping behavior induced by visible multi-dimensional gradients of magnetic nanoparticles. Soft Matter, 2012, 8, 3295.	2.7	66
71	Three-Dimensional Porous Carbon Nanotubes/Reduced Graphene Oxide Fiber from Rapid Phase Separation for a High-Rate All-Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 9283-9290.	8.0	66
72	Functional fillers for dental resin composites. Acta Biomaterialia, 2021, 122, 50-65.	8.3	66

#	Article	IF	CITATIONS
73	Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Materials Science and Engineering C, 2013, 33, 4994-5000.	7.3	65
74	A crosslinking alkylation strategy to construct nitrogen-enriched tetraphenylmethane-based porous organic polymers as efficient carbon dioxide and iodine adsorbents. Chemical Engineering Journal, 2020, 382, 122998.	12.7	65
75	Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Science China Chemistry, 2013, 56, 716-723.	8.2	64
76	High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy, 2017, 34, 69-75.	16.0	63
77	A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy, 2018, 48, 464-470.	16.0	63
78	Low pressure UV-cured CS–PEO–PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation. Journal of Materials Chemistry A, 2016, 4, 15575-15588.	10.3	62
79	The assembly of dendrimer-stabilized gold nanoparticles onto electrospun polymer nanofibers for catalytic applications. Journal of Materials Chemistry A, 2014, 2, 2323.	10.3	61
80	Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. Nano Letters, 2021, 21, 1228-1237.	9.1	61
81	Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles. Materials Science and Engineering C, 2011, 31, 600-605.	7.3	60
82	Investigation on the physical–mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Materials Science and Engineering C, 2015, 50, 266-273.	7.3	60
83	Self-reinforcement of Light, Temperature-Resistant Silica Nanofibrous Aerogels with Tunable Mechanical Properties. Advanced Fiber Materials, 2020, 2, 338-347.	16.1	58
84	Temperature―and pHâ€Sensitive Nanocomposite Gels with Semiâ€Interpenetrating Organic/Inorganic Networks. Macromolecular Chemistry and Physics, 2008, 209, 1564-1575.	2.2	57
85	Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. Journal of Materials Chemistry C, 2018, 6, 12849-12857.	5.5	57
86	Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chemistry of Materials, 2020, 32, 8276-8285.	6.7	57
87	Spider Silkâ€Inspired Artificial Fibers. Advanced Science, 2022, 9, e2103965.	11.2	57
88	Enhancing the Electrochemical Performance of Sodiumâ€lon Batteries by Building Optimized NiS ₂ /NiSe ₂ Heterostructures. Small, 2021, 17, e2104186.	10.0	56
89	From crystals to columnar liquid crystal phases: molecular design, synthesis and phase structure characterization of a series of novel phenazines potentially useful in photovoltaic applications. Soft Matter, 2010, 6, 100-112.	2.7	55
90	Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Composites Science and Technology, 2014, 101, 86-93.	7.8	55

#	Article	IF	CITATIONS
91	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	10.3	55
92	Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dental Materials, 2014, 30, 1358-1368.	3.5	54
93	Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress in Natural Science: Materials International, 2016, 26, 58-64.	4.4	54
94	Multifunctional fabrics of carbon nanotube fibers. Journal of Materials Chemistry A, 2019, 7, 8790-8797.	10.3	54
95	Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers. Materials Science and Engineering C, 2013, 33, 4759-4766.	7.3	53
96	Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors. Scientific Reports, 2014, 4, 4248.	3.3	53
97	Low shrinkage light curable dental nanocomposites using SiO2 microspheres as fillers. Materials Science and Engineering C, 2012, 32, 2115-2121.	7.3	52
98	Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. European Polymer Journal, 2015, 69, 472-482.	5.4	51
99	A Bioinspired Swimming and Walking Hydrogel Driven by Lightâ€Controlled Local Density. Advanced Science, 2015, 2, 1500084.	11.2	50
100	A Novel Nanocomposite Hydrogel with Precisely Tunable UCST and LCST. Macromolecular Rapid Communications, 2015, 36, 477-482.	3.9	50
101	Surprising conversion of nanocomposite hydrogels with high mechanical strength by posttreatment: From a low swelling ratio to an ultrahigh swelling ratio. Journal of Polymer Science Part A, 2006, 44, 6640-6645.	2.3	49
102	TREMâ€2 Promotes Macrophageâ€Mediated Eradication of <i>Pseudomonas aeruginosa</i> via a PI3K/Akt Pathway. Scandinavian Journal of Immunology, 2014, 79, 187-196.	2.7	47
103	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Applied Energy Materials, 2018, 1, 377-386.	5.1	47
104	Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Advances, 2016, 6, 50112-50118.	3.6	46
105	Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Materials, 2020, 33, 11-17.	18.0	46
106	Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A, 2017, 5, 21114-21121.	10.3	44
107	Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: Rheology, preparation and characterization. Polymer, 2017, 123, 55-64.	3.8	44
108	Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose, 2018, 25, 3179-3188.	4.9	44

#	Article	IF	CITATIONS
109	Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance. Microporous and Mesoporous Materials, 2019, 273, 294-296.	4.4	44
110	Dopant-dependent crystallization and photothermal effect of Sb-doped SnO ₂ nanoparticles as stable theranostic nanoagents for tumor ablation. Nanoscale, 2018, 10, 2542-2554.	5.6	43
111	Flexible poly(styrene-butadiene-styrene)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range, and fast response. Sensors and Actuators B: Chemical, 2018, 256, 896-904.	7.8	43
112	High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization. International Journal of Biological Macromolecules, 2021, 181, 1063-1071.	7.5	43
113	Engineering π–π interactions for enhanced photoluminescent properties: unique discrete dimeric packing of perylene diimides. RSC Advances, 2017, 7, 6530-6537.	3.6	42
114	Synthesis of core-shell structured ZnO@m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dental Materials, 2018, 34, 1846-1855.	3.5	42
115	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	16.1	42
116	Strong, high stretchable and ultrasensitive SEBS/CNTs hybrid fiber for high-performance strain sensor. Composites Communications, 2021, 25, 100735.	6.3	42
117	Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Research, 2019, 12, 1453-1460.	10.4	41
118	Scalable microgel spinning of a three-dimensional porous graphene fiber for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 25355-25362.	10.3	41
119	Flexible Solar Yarns with 15.7% Power Conversion Efficiency, Based on Electrospun Perovskite Composite Nanofibers. Solar Rrl, 2020, 4, 2000269.	5.8	41
120	Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Materials Letters, 2017, 209, 400-403.	2.6	40
121	Facile Synthesis of Nitrogen-Rich Porous Organic Polymers for Latent Heat Energy Storage. ACS Applied Energy Materials, 2018, 1, 6535-6540.	5.1	40
122	Ultralow Resistance Two‧tage Electrostatically Assisted Air Filtration by Polydopamine Coated PET Coarse Filter. Small, 2021, 17, e2102051.	10.0	40
123	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical and Photobiological Sciences, 2022, 21, 275-301.	2.9	40
124	Ultrahigh line-capacity and flexible graphene/carbon nanotube/tin oxide fibers as sodium ion battery anodes. Energy Storage Materials, 2022, 48, 35-43.	18.0	40
125	Modification of Nancomposite Gels by Irreversible Rearrangement of Polymer/Clay Network Structure through Drying. Macromolecules, 2010, 43, 9848-9853.	4.8	39
126	Blue Te Nanoneedles with Strong NIR Photothermal and Laserâ€Enhanced Anticancer Effects as "Allâ€inâ€One―Nanoagents for Synergistic Thermoâ€Chemotherapy of Tumors. Advanced Healthcare Materials, 2018, 7, e1800643.	7.6	39

#	Article	IF	CITATIONS
127	Transforming a Sword into a Knife: Persistent Phototoxicity Inhibition and Alternative Therapeutical Activation of Highly-Photosensitive Phytochlorin. ACS Nano, 2021, 15, 19793-19805.	14.6	38
128	Flexible Ceramic Fibers: Recent Development in Preparation and Application. Advanced Fiber Materials, 2022, 4, 573-603.	16.1	38
129	On-demand assembly of polymeric nanoparticles for longer-blood-circulation and disassembly in tumor for boosting sonodynamic therapy. Bioactive Materials, 2022, 18, 242-253.	15.6	38
130	Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synthetic Metals, 2017, 233, 86-93.	3.9	37
131	Electromagnetic wave absorption polyimide fabric prepared by coating with core–shell NiFe ₂ O ₄ @PANI nanoparticles. RSC Advances, 2017, 7, 42891-42899.	3.6	37
132	One Responsive Stone, Three Birds: Mn(III)â€Hemoporfin Frameworks with Glutathioneâ€Enhanced Degradation, MRI, and Sonodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2001463.	7.6	37
133	Trap Distribution and Conductivity Synergic Optimization of High-Performance Triboelectric Nanogenerators for Self-Powered Devices. ACS Applied Materials & Interfaces, 2021, 13, 2566-2575.	8.0	37
134	Expanded conformation of macromolecular chain in polyaniline with one-dimensional nanostructure prepared by interfacial polymerization. Applied Physics Letters, 2006, 89, 103110.	3.3	36
135	Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. National Science Review, 2021, 8, nwaa209.	9.5	36
136	Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. National Science Review, 2021, 8, nwaa135.	9.5	36
137	Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. Journal of Nanoparticle Research, 2010, 12, 2349-2353.	1.9	35
138	Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RSC Advances, 2016, 6, 40480-40488.	3.6	35
139	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	9.9	35
140	Preparation of PA6/nano titanium dioxide(TiO2) composites and their spinnability. Macromolecular Symposia, 2004, 210, 251-261.	0.7	34
141	Polyethylene glycol infused acid-etched halloysite nanotubes for melt-spun polyamide-based composite phase change fibers. Applied Clay Science, 2019, 182, 105249.	5.2	34
142	Self-Perpetuating Carbon Foam Microwave Plasma Conversion of Hydrocarbon Wastes into Useful Fuels and Chemicals. Environmental Science & Technology, 2021, 55, 6239-6247.	10.0	34
143	Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination, 2021, 509, 115072.	8.2	34
144	Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioactive Materials, 2021, 6, 4531-4541.	15.6	34

#	Article	IF	CITATIONS
145	Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamicâ€Crosslinkingâ€Spinning. Macromolecular Rapid Communications, 2016, 37, 1795-1801.	3.9	33
146	UV/NIR-Light-Triggered Rapid and Reversible Color Switching for Rewritable Smart Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 13370-13379.	8.0	33
147	Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chemical Engineering Journal, 2020, 383, 123126.	12.7	33
148	A novel leaf inspired hydrogel film based on fiber reinforcement as rapid steam sensor. Chemical Engineering Journal, 2020, 382, 122948.	12.7	33
149	A Study of the Synthesis and Properties of AM/AMPS Copolymer as Superabsorbent. Macromolecular Materials and Engineering, 2004, 289, 1074-1078.	3.6	32
150	Electrical conductivity and rheological behavior of multiphase polymer composites containing conducting carbon black. Polymer Engineering and Science, 2008, 48, 2090-2097.	3.1	32
151	PEGylated Cs _x WO ₃ nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Advances, 2015, 5, 7074-7082.	3.6	32
152	Turn-off/on fluorescent sensors for Cu ²⁺ and ATP in aqueous solution based on a tetraphenylethylene derivative. Journal of Materials Chemistry C, 2019, 7, 2640-2645.	5.5	32
153	Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. Advanced Science, 2021, 8, e2102859.	11.2	32
154	Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 2015, 5, 2383-2391.	3.6	31
155	Hydrophobic SiO ₂ Electret Enhances the Performance of Poly(vinylidene fluoride) Nanofiber-Based Triboelectric Nanogenerator. Journal of Physical Chemistry C, 2016, 120, 26600-26608.	3.1	31
156	Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition. Cellulose, 2017, 24, 219-229.	4.9	31
157	Rapid metal-free synthesis of pyridyl-functionalized conjugated microporous polymers for visible-light-driven water splitting. Polymer Chemistry, 2020, 11, 3393-3397.	3.9	31
158	Enantiomeric Switching of the Circularly Polarized Luminescence Processes in a Hierarchical Biomimetic System by Film Tilting. ACS Nano, 2021, 15, 1397-1406.	14.6	31
159	Mechanical properties of biocompatible clay/P(MEO 2 MA- co -OEGMA) nanocomposite hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 74-81.	3.1	30
160	Fiber engineering of silica-based aerogels with surface specificity and regenerability for continuous removal of dye pollutants from wastewaters. Microporous and Mesoporous Materials, 2021, 314, 110874.	4.4	30
161	Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors. ACS Applied Materials & Amp; Interfaces, 2021, 13, 28433-28441.	8.0	30
162	3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Materials Science and Engineering C, 2022, 133, 112618.	7.3	30

#	Article	IF	CITATIONS
163	A Proteinâ€Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. Advanced Materials, 2022, 34, e2201843.	21.0	30
164	Designable synthesis of nanocomposite hydrogels with excellent mechanical properties based on chemical cross-linked interactions. Chemical Communications, 2010, 46, 7790.	4.1	29
165	Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Progress in Natural Science: Materials International, 2012, 22, 94-99.	4.4	29
166	Highly flexible and shape-persistent graphene microtube and its application in supercapacitor. Carbon, 2018, 126, 419-425.	10.3	29
167	Melt-spun microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers with enhanced toughness: Synergistic effect of heterogeneous nucleation, long-chain branching and drawing process. International Journal of Biological Macromolecules, 2019, 122, 1136-1143.	7.5	29
168	Reactive spinning to achieve nanocomposite gel fibers: from monomer to fiber dynamically with enhanced anisotropy. Materials Horizons, 2020, 7, 811-819.	12.2	29
169	A simple inorganic hybrids strategy for graphene fibers fabrication with excellent electrochemical performance. Journal of Power Sources, 2020, 450, 227637.	7.8	29
170	Facile and Green Strategy for Designing Ultralight, Flexible, and Multifunctional PVA Nanofiberâ€Based Aerogels. Advanced Sustainable Systems, 2020, 4, 1900141.	5.3	29
171	Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9, 12265-12275.	10.3	29
172	Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. Journal of Materials Chemistry A, 2017, 5, 13944-13949.	10.3	28
173	Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nano-Micro Letters, 2019, 11, 75.	27.0	28
174	Fast Heat Transport Inside Lithium-Sulfur Batteries Promotes Their Safety and Electrochemical Performance. IScience, 2020, 23, 101576.	4.1	28
175	A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioactive Materials, 2022, 8, 559-572.	15.6	28
176	Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon, 2022, 193, 258-271.	10.3	28
177	Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Science China Chemistry, 2022, 65, 363-372.	8.2	28
178	Synthesis and characterization of multiâ€block copolymers containing poly [(3â€hydroxybutyrate)â€ <i>co</i> â€(3â€hydroxyvalerate)] and poly(ethylene glycol). Polymer International, 2010, 59, 842-850.	3.1	27
179	Selective removal of mercury ions using thymine-grafted electrospun polymer nanofibers. New Journal of Chemistry, 2014, 38, 1533-1539.	2.8	27
180	Polyacrylic Acid Assisted Assembly of Oxide Particles and Carbon Nanotubes for Highâ€Performance Flexible Battery Anodes. Advanced Energy Materials, 2015, 5, 1401207.	19.5	27

#	Article	IF	CITATIONS
181	A monodisperse anionic silver nanoparticles colloid: Its selective adsorption and excellent plasmon-induced photodegradation of Methylene Blue. Journal of Colloid and Interface Science, 2018, 523, 98-109.	9.4	27
182	Cobalt Nanocrystals Encapsulated in Heteroatomâ€Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803232.	10.0	27
183	Surface modification of urchin-like serried hydroxyapatite with sol-gel method and its application in dental composites. Composites Part B: Engineering, 2020, 182, 107621.	12.0	27
184	Biomass-Derived, Highly Conductive Aqueous Inks for Superior Electromagnetic Interference Shielding, Joule Heating, and Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 57930-57942.	8.0	27
185	Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent performance for powering nanobiodevices implanted under the skin. Journal of Materials Chemistry, 2012, 22, 18156.	6.7	26
186	Fabricating conductive poly(ethylene terephthalate) nonwoven fabrics using an aqueous dispersion of reduced graphene oxide as a sheet dyestuff. RSC Advances, 2014, 4, 23869-23875.	3.6	26
187	Effect of TiO2@SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers. Progress in Natural Science: Materials International, 2015, 25, 310-315.	4.4	26
188	Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts. Macromolecular Materials and Engineering, 2017, 302, 1700214.	3.6	26
189	Functionalization-Directed Stabilization of Hydrogen-Bonded Polymer Complex Fibers: Elasticity and Conductivity. Advanced Fiber Materials, 2019, 1, 71-81.	16.1	26
190	Synthesis and Characterization of Methacrylate-Functionalized Betulin Derivatives as Antibacterial Comonomer for Dental Restorative Resins. ACS Biomaterials Science and Engineering, 2021, 7, 3132-3140.	5.2	26
191	Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing. Materials Science and Engineering C, 2021, 127, 112202.	7.3	26
192	Effect of halloysite nanotubes on thermal and flame retardant properties of polyamide 6/melamine cyanurate composites. Polymer Composites, 2015, 36, 892-896.	4.6	25
193	Synthesis and characterization of size-controlled nano-Cu2O deposited on alpha-zirconium phosphate with excellent antibacterial property. Materials Science and Engineering C, 2019, 101, 499-504.	7.3	25
194	Melt Spinning of Low-Cost Activated Carbon Fiber with a Tunable Pore Structure for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2020, 3, 9360-9368.	5.1	25
195	In-Fiber Structured Particles and Filament Arrays from the Perspective of Fluid Instabilities. Advanced Fiber Materials, 2020, 2, 1-12.	16.1	25
196	Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance. Electrochimica Acta, 2019, 304, 378-385.	5.2	24
197	Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. Journal of Power Sources, 2019, 422, 196-207.	7.8	24
198	Tough Gel-Fibers as Strain Sensors Based on Strain–Optics Conversion Induced by Anisotropic Structural Evolution. Chemistry of Materials, 2020, 32, 9675-9687.	6.7	24

#	Article	IF	CITATIONS
199	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17551-17557.	7.1	24
200	Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. Journal of Materials Chemistry C, 2021, 9, 439-455.	5.5	24
201	Efficient Construction of SiO ₂ Colloidal Nanoparticle Clusters as Novel Fillers by a Spray-Drying Process for Dental Composites. Industrial & Engineering Chemistry Research, 2019, 58, 18178-18186.	3.7	23
202	Molecular Weight Discrete Distribution-Induced Orientation of High-Strength Copolyamide Fibers: Effects of Component Proportion and Molecular Weight. Macromolecules, 2021, 54, 7529-7539.	4.8	23
203	Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility. RSC Advances, 2017, 7, 48934-48941.	3.6	22
204	1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Science China Materials, 2019, 62, 995-1004.	6.3	22
205	Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations <i>via</i> Dynamic Stretching. ACS Applied Materials & Interfaces, 2021, 13, 19291-19300.	8.0	22
206	Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification. Journal of Materials Science and Technology, 2022, 106, 10-18.	10.7	22
207	Surface modification of quartz fibres for dental composites through a sol-gel process. Materials Science and Engineering C, 2017, 74, 21-26.	7.3	21
208	Structural control of silica aerogel fibers for methylene blue removal. Science China Technological Sciences, 2019, 62, 958-964.	4.0	21
209	Melt-spun industrial super-strong polycaprolactam fiber: Effects of tie-molecules and crystal transformation. Composites Part B: Engineering, 2020, 185, 107772.	12.0	21
210	Poly(mâ€Phenylene Isophthalamide) Ultrafine Fibers from an Ionic Liquid Solution by Dryâ€Jetâ€Wetâ€Electrospinning. Journal of Macromolecular Science - Physics, 2006, 45, 573-579.	1.0	20
211	Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Progress in Natural Science: Materials International, 2013, 23, 573-578.	4.4	20
212	Lithium-ion battery fiber constructed by diverse-dimensional carbon nanomaterials. Journal of Materials Science, 2019, 54, 582-591.	3.7	20
213	Integrating Nano-Cu2O@ZrP into In Situ Polymerized Polyethylene Terephthalate (PET) Fibers with Enhanced Mechanical Properties and Antibacterial Activities. Polymers, 2019, 11, 113.	4.5	20
214	Biomedical electronics powered by solar cells. Current Opinion in Biomedical Engineering, 2020, 13, 25-31.	3.4	20
215	Reusable Polyacrylonitrile‧ulfur Extractor of Heavy Metal Ions from Wastewater. Advanced Functional Materials, 2021, 31, 2105845.	14.9	20
216	Novel poly(<i>N</i> â€isopropylacrylamide)/clay/poly(acrylamide) IPN hydrogels with the response rate and drug release controlled by clay content. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 96-106.	2.1	19

#	Article	IF	CITATIONS
217	Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite. Materials Science and Engineering C, 2015, 53, 150-155.	7.3	19
218	Shape-stabilized phase change materials with high phase change enthalpy based on synthetic comb-like poly(acrylonitrile-co-ethylene glycol) for thermal management. Science China Chemistry, 2017, 60, 1450-1457.	8.2	19
219	Facile Synthesis of High Molecular Weight Polypeptides via Fast and Moisture Insensitive Polymerization of α-Amino Acid N-Carboxyanhydrides. Chinese Journal of Polymer Science (English) Tj ETQq1 I	1 0.7 8 4314	rg BI Ð/Overlo
220	Fabrication and gas sensing behavior of poly(3,4-ethylenedioxythiophene) coated polypropylene fiber with engineered interface. Reactive and Functional Polymers, 2017, 112, 74-80.	4.1	18
221	Dental Restorative Resin Composites: Modification Technologies for the Matrix/Filler Interface. Macromolecular Materials and Engineering, 2018, 303, 1800264.	3.6	18
222	<i>In situ</i> growth of Au nanoparticles on natural melanin as biocompatible and multifunctional nanoagent for efficient tumor theranostics. Journal of Materials Chemistry B, 2019, 7, 133-142.	5.8	18
223	High thermal stability Cu O@OZrP micro-nano hybrids for melt-spun excellent antibacterial activity polyester fibers. Journal of Materials Science and Technology, 2021, 81, 58-66.	10.7	18
224	Morphological Characterization of PMMA/PAN Composite Particles in Nano to Submicro Size. Macromolecular Materials and Engineering, 2005, 290, 669-674.	3.6	17
225	Mechanical Properties and Phase Transition of High Clay Content Clay/Poly(Nâ€isopropylacrylamide) Nanocomposite Hydrogel. Macromolecular Symposia, 2007, 254, 353-360.	0.7	17
226	Nonisothermal crystallization kinetics of poly(<i>ε</i> â€caprolactone) blocks in double crystalline triblock copolymers containing poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) and poly(εâ€caprolactone) units. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2288-2295.	2.1	17
227	Thermoâ€Induced Double Phase Transition Behavior of Physically Crossâ€Linked Hydrogels Based on Oligo(ethylene glycol) methacrylates. Macromolecular Chemistry and Physics, 2015, 216, 2230-2240.	2.2	17
228	Concentration-dependent self-assembly structures of an amphiphilic perylene diimide with tri(ethylene glycol) substituents at bay positions. RSC Advances, 2017, 7, 26074-26081.	3.6	17
229	A cascaded enzyme-loaded Fe–hemoporfin framework for synergistic sonodynamic-starvation therapy of tumors. Nanoscale, 2021, 13, 5910-5920.	5.6	17
230	A Novel NIR Laser Switched Nanocomposite Hydrogel as Remote Stimuli Smart Valve. Macromolecular Materials and Engineering, 2017, 302, 1700213.	3.6	16
231	Synergistic Effects of Solvent Vapor Assisted Spin-coating and Thermal Annealing on Enhancing the Carrier Mobility of Poly(3-hexylthiophene) Field-effect Transistors. Chinese Journal of Polymer Science (English Edition), 2021, 39, 849-855.	3.8	16
232	Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochimica Acta, 2022, 411, 140070.	5.2	16
233	Red Phosphorus Anchored on Nitrogenâ€Doped Carbon Bubbleâ€Carbon Nanotube Network for Highly Stable and Fastâ€Charging Lithiumâ€ion Batteries. Small, 2022, 18, e2105866.	10.0	16
234	Cooperative Chemical Coupling and Physical Lubrication Effects Construct Highly Dynamic Ionic Covalent Adaptable Network for High-Performance Wearable Electronics. CCS Chemistry, 2023, 5, 1096-1107.	7.8	16

#	Article	IF	CITATIONS
235	How does the interplay between bromine substitution at bay area and bulky substituents at imide position influence the photophysical properties of perylene diimides?. RSC Advances, 2017, 7, 16155-16162.	3.6	15
236	Conformally anchoring nanocatalyst onto quartz fibers enables versatile microreactor platforms for continuous-flow catalysis. Science China Chemistry, 2021, 64, 1596-1604.	8.2	15
237	Core-shell structured SiO2@ZrO2@SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104593.	3.1	15
238	A 3D Printable Thermal Energy Storage Crystalline Gel Using Mask-Projection Stereolithography. Polymers, 2018, 10, 1117.	4.5	14
239	Improving the Physical–Mechanical Property of Dental Composites by Grafting Methacrylate-Polyhedral Oligomeric Silsesquioxane onto a Filler Surface. ACS Biomaterials Science and Engineering, 2021, 7, 1428-1437.	5.2	14
240	Skeletal Muscle Fibers Inspired Polymeric Actuator by Assembly of Triblock Polymers. Advanced Science, 2022, 9, e2105764.	11.2	14
241	The variation of fibrils' number in the sea-island fiber -low density polyethylene/polyamide 6 Fibers and Polymers, 2010, 11, 494-499.	2.1	13
242	Morphology and properties of renewable poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) blends with thermoplastic polyurethane. Polymer Engineering and Science, 2014, 54, 1113-1119.	3.1	13
243	Natural polyphenol tannic acid reinforced poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) composite films with enhanced tensile strength and fracture toughness. Polymer Composites, 2015, 36, 2303-2308.	4.6	13
244	Highly Conductive Nanocomposite Enabled by an Accordion-like Graphene Network for Flexible Heating Films and Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4781-4787.	5.0	13
245	Discovery of selectionâ€driven genetic differences of Duroc, Landrace, and Yorkshire pig breeds by EigenGWAS and <i>F</i> _{st} analyses. Animal Genetics, 2020, 51, 531-540.	1.7	13
246	Kraft lignin-based piezoresistive sensors: Effect of chemical structure on the microstructure of ultrathin carbon fibers. International Journal of Biological Macromolecules, 2020, 151, 730-739.	7.5	13
247	Hydrogen bonding effect on micellization and morphological transformations of the polystyrene-block-poly(ethylene oxide) micelles. Soft Matter, 2012, 8, 10307.	2.7	12
248	Novel flexible broadband microwave absorptive fabrics coated with graphite nanosheets/polyurethane nanocomposites. Progress in Natural Science: Materials International, 2012, 22, 288-294.	4.4	12
249	Particular thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligomers. Journal of Polymer Research, 2012, 19, 1.	2.4	12
250	Effects of electron-beam irradiation crosslinking on PA6 fibers. Fibers and Polymers, 2013, 14, 525-529.	2.1	12
251	Thermal and anti-dripping properties of γ-irradiated PA6 fiber with the presence of sensitizers. Materials Letters, 2013, 99, 28-30.	2.6	12
252	Studies on melt spinning of sea-island fibers. I. morphology evolution of polypropylene/polystyrene blend fibers. Fibers and Polymers, 2014, 15, 1941-1949.	2.1	12

#	Article	IF	CITATIONS
253	The Synergistic Effect of Organic Phosphorous/α-Zirconium Phosphate on Flame-Retardant Poly(lactic) Tj ETQq1 1	0.78431 2.1	4_rgBT /Ove
254	Fiber Changes Our Life. Advanced Fiber Materials, 2019, 1, 1-2.	16.1	12
255	Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dental Materials, 2021, 37, 961-971.	3.5	12
256	Organic–Inorganic Hybrid Conductive Network to Enhance the Electrical Conductivity of Graphene-Hybridized Polymeric Fibers. Chemistry of Materials, 2022, 34, 2049-2058.	6.7	12
257	3Dâ€Printed Strong Dental Crown with Multiâ€Scale Ordered Architecture, Highâ€Precision, and Bioactivity. Advanced Science, 2022, 9, e2104001.	11.2	12
258	The Effect of Hydrotalcite and Zinc Oxide on Smoke Suppression of Commercial Rigid PVC. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1807-1814.	2.2	11
259	The non-uniform phase structure in blend fiber. I. Non-uniform deformation of the dispersed phase in melt spinning. Fibers and Polymers, 2010, 11, 249-257.	2.1	11
260	Synthesis and Characterization of Combâ€like P(MPEGAâ€ <i>co</i> â€AM) Copolymer as Phase Change Materials. Chinese Journal of Chemistry, 2012, 30, 2247-2251.	4.9	11
261	Study on the matrix-fibril morphologies of polypropylene/polystyrene blends under non-isothermal uniaxial elongational flow. Fibers and Polymers, 2014, 15, 744-752.	2.1	11
262	NIR-laser-triggered smart full-polymer nanogels for synergic photothermal-/chemo-therapy of tumors. RSC Advances, 2016, 6, 90111-90119.	3.6	11
263	Novel block glycopolymers prepared as delivery nanocarriers for controlled release of bortezomib. Colloid and Polymer Science, 2018, 296, 1827-1839.	2.1	11
264	The Stabilization Effect of Ï€â€Backdonation Ligands on the Catalytic Reactivities of Amidoâ€Ene(amido) Iron Catalysts in the Asymmetric Transfer Hydrogenation of Ketones. European Journal of Inorganic Chemistry, 2020, 2020, 3103-3110.	2.0	11
265	Thermal Stability of Bioâ€Based Aliphaticâ€Semiaromatic Copolyester for Meltâ€Spun Fibers with Excellent Mechanical Properties. Macromolecular Rapid Communications, 2021, 42, e2000498.	3.9	11
266	A General Strategy for Efficiently Constructing Multifunctional Cluster Fillers Using a Three-Fluid Nozzle Spray Drying Technique for Dental Restoration. Engineering, 2022, 8, 138-147.	6.7	11
267	Crystallization behavior and thermal properties of blends of poly(3-hydroxybutyate-co-3-valerate) and poly(1,2-propandiolcarbonate). Macromolecular Symposia, 2004, 210, 241-250.	0.7	10
268	A New Nano‣tructured Flameâ€Retardant Poly(ethylene terephthalate). Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1867-1875.	2.2	10
269	Novel poly(fluorinated imide)s containing naphthalene pendant group: synthesis and characterization. Colloid and Polymer Science, 2009, 287, 1331-1337.	2.1	10
270	The non-uniform phase structure in blend fiber. II. The migration phenomenon in melt spinning. Fibers and Polymers, 2010, 11, 625-631.	2.1	10

Zhu Meifang

#	Article	IF	CITATIONS
271	Preparation and characterization of a prolonged and sustained drug delivery system: Linear polyacrylamide in poly(<i>N</i> â€isopropylacrylamide)/clay hydrogels. Journal of Applied Polymer Science, 2012, 125, E148.	2.6	10
272	Evolution of concentric spherulites in crystalline-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-b-poly(ethylene glycol) copolymers. European Polymer Journal, 2013, 49, 3937-3946.	5.4	10
273	Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant. Fibers and Polymers, 2017, 18, 1098-1105.	2.1	10
274	The Synthesis of Urchinâ€Like Serried Hydroxyapatite (USHA) and its Reinforcing Effect for Dental Resin Composites. Macromolecular Materials and Engineering, 2019, 304, 1800738.	3.6	10
275	Enhanced photo-stability polyphenylene sulfide fiber via incorporation of multi-walled carbon nanotubes using exciton quenching. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105716.	7.6	10
276	High-Performance Transparent Laminates Based on Highly Oriented Polyethylene Films. ACS Applied Polymer Materials, 2020, 2, 2458-2468.	4.4	10
277	Effectiveness and Mechanism of the Ene(amido) Group in Activating Iron for the Catalytic Asymmetric Transfer Hydrogenation of Ketones. Organometallics, 2021, 40, 134-147.	2.3	10
278	Synthesis of MnO ₂ –Ag Nanojunctions with Plasmon-Enhanced Photocatalytic and Photothermal Effects for Constructing Rewritable Mono-/Multi-Color Fabrics. ACS Applied Materials & Interfaces, 2022, 14, 5545-5557.	8.0	10
279	Mechanism of the Formation of Concentric Ring-like Patterns on PHBV Spherulites. Polymer-Plastics Technology and Engineering, 2004, 43, 1-15.	1.9	9
280	Blends of polypropylene and modified polystyrene for dyeable fibers. Journal of Applied Polymer Science, 2005, 96, 2360-2366.	2.6	9
281	Kinetics of the thermal degradation of hyperbranched poly(phenylene sulfide). Journal of Applied Polymer Science, 2009, 111, 1900-1904.	2.6	9
282	Preparation and Property of Poly(<i>N</i> -isopropylacrylamide) (PNIPAAm)/Clay/Linear Polyacrylamide (PAAm) Nanocomposite Hydrogels. Journal of Macromolecular Science - Physics, 2010, 49, 843-853.	1.0	9
283	Noncovalent binding interactions of polyacrylamide and clay in nanocomposite hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 263-266.	2.1	9
284	Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for Poly(ethylene glycol) diacrylate fiber fabrication. Polymer, 2019, 183, 121903.	3.8	9
285	Surface Modification of ZrO ₂ Nanoparticles and Its Effects on the Properties of Dental Resin Composites. ACS Applied Bio Materials, 2020, 3, 5300-5309.	4.6	9
286	Perylene diimide derivative <i>via</i> ionic self-assembly: helical supramolecular structure and selective detection of ATP. Journal of Materials Chemistry C, 2020, 8, 10422-10430.	5.5	9
287	Reversible Fusion and Fission of Graphene Oxide-based Fibers. Advanced Fiber Materials, 2021, 3, 381-382.	16.1	9
288	Nanoprocessed Silk Makes Skin Feel Cool. Advanced Fiber Materials, 2022, 4, 319-320.	16.1	9

#	Article	IF	CITATIONS
289	Soluble poly (aryl ether)s containing naphthalene pendant group: synthesis, characterization and electrospinning. Colloid and Polymer Science, 2010, 288, 907-914.	2.1	8
290	Novel photoluminescence poly(fluorinated imide)s electrospun fibers with blue, olive green and red fluorescence. Colloid and Polymer Science, 2010, 288, 1471-1477.	2.1	8
291	Studies on melt spinning of sea-island fibers. II. Dynamics of melt spinning of polypropylene/polystyrene blend fibers. Fibers and Polymers, 2015, 16, 449-462.	2.1	8
292	Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses. Frontiers of Materials Science, 2018, 12, 95-104.	2.2	8
293	Dental Resin Composites Reinforced by Rough Core–Shell SiO ₂ Nanoparticles with a Controllable Mesoporous Structure. ACS Applied Bio Materials, 2019, 2, 4233-4241.	4.6	8
294	Investigation of pH-responsive block glycopolymers with different structures for the delivery of doxorubicin. RSC Advances, 2019, 9, 1814-1821.	3.6	8
295	Adsorption of Cd2+and Cu2+by Oxidized Cellulose from TEMPOâ€mediated Selective Oxidation of Alkaline Natural Cellulose Pulp. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1895-1906.	2.2	7
296	Fabricating novel thermal crosslinked ultrafine fibers via electrospinning. Journal of Applied Polymer Science, 2008, 107, 2142-2149.	2.6	7
297	Polypropylene Nanocomposites Based on Synthetic Organic-Soluble Ag Nanocrystals with Prominent β-nucleating Effect: Quiescent Crystallization and Melting Behavior. Journal of Macromolecular Science - Physics, 2012, 51, 2505-2518.	1.0	7
298	Morphology transformation of polystyrene-block-poly(ethylene oxide) vesicle on surface. Polymer, 2013, 54, 3709-3715.	3.8	7
299	Influence of amorphous alkaline lignin on the crystallization behavior and thermal properties of bacterial polyester. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
300	The Crystallization, Melting Behaviors and Thermal Stability of Cross-linked Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Octavinyloctasilasesquioxane. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1353-1360.	3.8	7
301	Crystal Transition Behavior and Thermal Properties of Thermal-Energy-Storage Copolymer Materials with an n-Behenyl Side-Chain. Polymers, 2019, 11, 1512.	4.5	7
302	Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls E by Internal Phosphine Oxide Directing Groups. Angewandte Chemie - International Edition, 2020, 59, 8153-8159.	nabled 13.8	7
303	Heat induction in two-dimensional graphene–Fe ₃ O ₄ nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances, 2021, 11, 21702-21715.	3.6	7
304	Tough, conductive hydrogels with double-network based on hydrophilic polymer assistant well-dispersed carbon nanotube for innovative force sensor. Science China Technological Sciences, 2022, 65, 1160-1168.	4.0	7
305	Nonisothermal Crystallization Kinetics of Poly(ϵ-caprolactone)/Zinc Oxide Nanocomposites with High Zinc Oxide Content. Journal of Macromolecular Science - Physics, 2011, 50, 2366-2375.	1.0	6
306	Wrinkle-free finishing of cotton fabrics based on click chemistry via ultraviolet radiation. Journal of the Textile Institute, 2018, 109, 1536-1542.	1.9	6

#	Article	IF	CITATIONS
307	Synthesis of Fluorinated Urchin-like Serried Hydroxyapatite with Improved Water Sorption-Solubility and Bioactivity for Dental Composites. Chemical Research in Chinese Universities, 2021, 37, 1092-1100.	2.6	6
308	Homogeneous intercalated graphene/manganic oxide hybrid fiber electrode assembly by non-liquid-crystal spinning for wearable energy storage. Journal of Materials Science and Technology, 2022, 97, 1-9.	10.7	6
309	A Facile Approach to Fabrication of Novel Magnetic Hydrogels Crosslinked by Multi-Functional Pomegranate-Like Nanospheres. Australian Journal of Chemistry, 2014, 67, 112.	0.9	5
310	One-pot preparation of poly(styrene-co-divinylbenzene)/silver nanoparticles composite microspheres with tunable porosity and their catalytic degradation of methylene blue in aqueous solution. RSC Advances, 2017, 7, 50176-50187.	3.6	5
311	A sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Nanoscale, 2018, 10, 13730-13736.	5.6	5
312	Enabling topical and long-term anti-radical properties for percutaneous coronary intervention-related complications by incorporating TEMPOL into electrospun nanofibers. Science China Materials, 2021, 64, 769-782.	6.3	5
313	Flame retardance enhancement of polyacrylonitrile with dimethyl vinylphosphonate. Journal of Applied Polymer Science, 2021, 138, 50718.	2.6	5
314	Molecular Motions in Polymer Matrix for Microenvironment Sensing. Chemical Research in Chinese Universities, 2021, 37, 90-99.	2.6	5
315	Fibrous Aerogels for Solar Vapor Generation. Frontiers in Chemistry, 2022, 10, 843070.	3.6	5
316	Solvation Effects on the Thermal Helix Inversion of Molecular Motors from QM/MM Calculations. Chemistry, 2022, 4, 185-195.	2.2	5
317	Reusable Polyacrylonitrile‣ulfur Extractor of Heavy Metal Ions from Wastewater (Adv. Funct. Mater.) Tj ETQq1	1 0,78431 14.9	I4 ₅ gBT /Ove
318	Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials, 2022, 287, 121666.	11.4	5
319	Selfâ€Assembly of Functionalized Gold Nanoparticles with Rigid and Flexible Multifunctional Linkers. Journal of Macromolecular Science - Physics, 2006, 45, 549-555.	1.0	4
320	Inâ€ S itu Formation of BHET/Titanium Compound Nanocomposite and its Catalysis for Polyester. Macromolecular Symposia, 2007, 254, 173-179.	0.7	4
321	Photoluminescence electrospun membranes of poly(aryl ether)s with hydrophobicity. Fibers and Polymers, 2013, 14, 693-697.	2.1	4
322	Preparation of silver nanoparticles with hydrophobic surface and their polyester based nanocomposite fibres with excellent antibacterial properties. Materials Research Innovations, 2014, 18, S4-869-S4-874.	2.3	4
323	The morphologies and fluorescence quantum yields of perylene diimide dye-doped PS and PHVB microspheres. RSC Advances, 2018, 8, 35534-35538.	3.6	4
324	Water Splitting: Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution (Small 42/2018). Small, 2018, 14, 1870193.	10.0	4

#	Article	IF	CITATIONS
325	Synthesis, Self-Assembly and Characterization of Tandem Triblock BPOSS-PDI-X Shape Amphiphiles. Molecules, 2019, 24, 2114.	3.8	4
326	Host–guest chemistry of giant molecular shape amphiphiles based on POSS–PDI conjugates. Nanoscale, 2021, 13, 4295-4300.	5.6	4
327	Fibers Make a Better Life. Chinese Journal of Polymer Science (English Edition), 2022, 40, 331-332.	3.8	4
328	Fiber Electronics Bring a New Generation of Acoustic Fabrics. Advanced Fiber Materials, 2022, 4, 321-323.	16.1	4
329	Smart Textiles for Human-machine Interface Fabricated via Facile on-site Vapor Phase Polymerization. Journal of Materials Chemistry C, 0, , .	5.5	4
330	Novel Interpenetrating Networks (IPNs) Hydrogels Prepared In Situ by Liquidâ€Phase Photopolymerization. Macromolecular Symposia, 2008, 264, 95-99.	0.7	3
331	Swelling behavior of poly(acrylamide)/clay nanocomposite hydrogels in acrylamide aqueous solution. Journal of Applied Polymer Science, 2009, 112, 353-358.	2.6	3
332	Tumor Therapy: NIR-Laser-Switched In Vivo Smart Nanocapsules for Synergic Photothermal and Chemotherapy of Tumors (Adv. Mater. 2/2016). Advanced Materials, 2016, 28, 206-206.	21.0	3
333	Continuous High-Aligned Polyacrylonitrile Electrospun Nanofibers Yarns via Circular Deposition on Water Bath. Journal of Nanoscience and Nanotechnology, 2016, 16, 5633-5638.	0.9	3
334	Photoluminescence emission of a stable and wellâ€dispersed unsaturated polyesterâ€ <i>co</i> â€rareâ€earth complex. Journal of Applied Polymer Science, 2017, 134, 45253.	2.6	3
335	Conformation Variation Induced Crystallization Enhancement of Poly(<scp>l</scp> -lactic acid) by Gluconic Derivatives. Crystal Growth and Design, 2020, 20, 653-660.	3.0	3
336	A Biomimeticâ€Mineralizationâ€Inspired Hybrid Mesocrystal with Boosted Lithium Storage Properties. ChemistrySelect, 2020, 5, 2240-2246.	1.5	3
337	SnO2 confining growth in layered graphene fibers toward superb volumetric lithium storage and flexibility. Applied Surface Science, 2021, 555, 149719.	6.1	3
338	Fibers to power the future. Joule, 2021, 5, 2764-2765.	24.0	3
339	Elastic polybenzimidazole nanofiber aerogel for thermal insulation and high-temperature oil adsorption. Journal of Materials Science, 2022, 57, 12125-12137.	3.7	3
340	Non-isothermal crystallization kinetics of Poly(phenylene sulfide)/hyperbrtanched Poly(phenylene) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
341_	Selfâ€Organized Nanocomposite of Gold Nanoparticles and Ï€â€Electron Organic Molecules. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1801-1805	2.2	1

342Selfâ€assembly of Functionalized Gold Nanoparticles with Rigid and Flexible Multifunctional Linkers.
Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1733-1739.2.21

#	Article	IF	CITATIONS
343	Oneâ€Dimensional Magnetic Composite of Polypyrroleâ€Containing Carbon Nanotubes/Ni0.75Zn0.25Fe2O4. Journal of Macromolecular Science - Physics, 2006, 45, 541-547.	1.0	1
344	Reactive bay functionalized perylene monoimide-polyhedral oligomeric silsesquioxane organic electronic dye. Materials Science-Poland, 2015, 33, 113-121.	1.0	1
345	Lithiumâ€Ion Batteries: Ionic Liquidâ€Assisted Synthesis of TiO ₂ –Carbon Hybrid Nanostructures for Lithiumâ€Ion Batteries (Adv. Funct. Mater. 9/2016). Advanced Functional Materials, 2016, 26, 1487-1487.	14.9	1
346	Frontispiece: Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls Enabled by Internal Phosphine Oxide Directing Groups. Angewandt Chemie - International Edition, 2020, 59, .	e13.8	1
347	Incorporating polyacrylamide-functionalized graphene nano-additive enables pilot-scale preparation of mechanically reinforced viscose staple fiber. Materials and Design, 2021, 202, 109587.	7.0	1
348	Ultralow Resistance Two tage Electrostatically Assisted Air Filtration by Polydopamine Coated PET Coarse Filter (Small 33/2021). Small, 2021, 17, 2170172.	10.0	1
349	Metafabric that can cool the human body. National Science Review, 2021, 8, nwab176.	9.5	1
350	Random Copolymerization of ε-Caprolactone and L-Lactide by Ring Opening Polymerization Using a Co/N-Doped Carbon Framework as Catalyst. Chemistry Africa, 2022, 5, 79-87.	2.4	1
351	Aqueous Self-Assembly of Hydrophobic Molecules Influenced by the Molecular Geometry. Journal of Physical Chemistry B, 2022, , .	2.6	1
352	Prodrug inspired biâ€layered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	3.4	1
353	Novel rapid response clay/poly(N-isopropylacrylamide) nanocomposite hydrogels by post treatment with HCl solution. E-Polymers, 2007, 7, .	3.0	0
354	Design of resin composites with enhanced physical–mechanical properties. Materials Research Innovations, 2014, 18, S4-812-S4-816.	2.3	0
355	Frontispiz: Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls Enabled by Internal Phosphine Oxide Directing Groups. Angewandt Chemie, 2020, 132, .	e2.0	0
356	Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls E by Internal Phosphine Oxide Directing Groups. Angewandte Chemie, 2020, 132, 8230-8236.	inabled	0
357	Inâ€Situ Stabilizing Nanoâ€Ag onto Nonwoven Fabrics via a Musselâ€Inspired Approach for Continuousâ€Flow Catalysis Reduction of Organic Dyes. ChemistrySelect, 2022, 7, .	1.5	0