
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7352538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Vinyl Selenides. Chemical Reviews, 2009, 109, 1277-1301.	23.0	297
2	α-Keto Acids: Acylating Agents in Organic Synthesis. Chemical Reviews, 2019, 119, 7113-7278.	23.0	151
3	Citronellal as key compound in organic synthesis. Tetrahedron, 2007, 63, 6671-6712.	1.0	119
4	Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chemistry, 2012, 14, 1030.	4.6	112
5	Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food and Chemical Toxicology, 2012, 50, 2668-2674.	1.8	110
6	Transesterification of castor oil assisted by microwave irradiation. Fuel, 2008, 87, 2838-2841.	3.4	88
7	Synthesis of 1,2-disubstitued benzimidazoles using SiO2/ZnCl2. Tetrahedron Letters, 2009, 50, 1495-1497.	0.7	87
8	Base-free oxidation of thiols to disulfides using selenium ionic liquid. Tetrahedron Letters, 2011, 52, 640-643.	0.7	83
9	Synthesis of Organochalcogen Compounds using Non-Conventional Reaction Media. ChemistrySelect, 2016, 1, 205-258.	0.7	79
10	Glycerin and CeCl3·7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Letters, 2009, 50, 6060-6063.	0.7	78
11	Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Letters, 2011, 52, 4132-4136.	0.7	75
12	Room-Temperature Organocatalytic Cycloaddition of Azides with Î ² -Keto Sulfones: Toward Sulfonyl-1,2,3-triazoles. Organic Letters, 2015, 17, 6206-6209.	2.4	67
13	Ultrasoundâ€Assisted Synthesis and Antioxidant Activity of 3â€5elanylâ€1 <i>H</i> â€indole and 3â€6elanylimidazo[1,2â€ <i>a</i>]pyridine Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 1635-1646.	1.3	67
14	Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst. Green Chemistry, 2015, 17, 4334-4339.	4.6	63
15	Synthesis of diaryl selenides using electrophilic selenium species and nucleophilic boron reagents in ionic liquids. Green Chemistry, 2011, 13, 2931.	4.6	61
16	Copperâ€Catalyzed Direct Arylselenation of Anilines by CH Bond Cleavage. Advanced Synthesis and Catalysis, 2015, 357, 933-939.	2.1	61
17	Selenonium ionic liquid as efficient catalyst for the Baylis–Hillman reaction. Tetrahedron Letters, 2009, 50, 5215-5217.	0.7	60
18	Sonochemistry: An efficient alternative to the synthesis of 3-selanylindoles using Cul as catalyst. Ultrasonics Sonochemistry, 2015, 27, 192-199.	3.8	60

GELSON PERIN

#	Article	IF	CITATIONS
19	Selenium- and tellurium-based ionic liquids and their use in the synthesis of octahydroacridines. Tetrahedron Letters, 2006, 47, 7439-7442.	0.7	56
20	Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides. Tetrahedron Letters, 2010, 51, 6772-6775.	0.7	55
21	Green, catalyst-free thioacetalization of carbonyl compounds using glycerol as recyclable solvent. Tetrahedron Letters, 2010, 51, 4354-4356.	0.7	54
22	Ultrasoundâ€Assisted Multicomponent Reactions, Organometallic and Organochalcogen Chemistry. Asian Journal of Organic Chemistry, 2018, 7, 2368-2385.	1.3	54
23	Copper-catalyzed sulfenylation of pyrroles with disulfides or thiols: directly synthesis of sulfenyl pyrroles. Tetrahedron Letters, 2012, 53, 3364-3368.	0.7	51
24	Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compound derivatives of chrysin. New Journal of Chemistry, 2015, 39, 3043-3050.	1.4	50
25	Clean and fast oxidative transformation of thiols to disulfides under solvent-free conditions. Tetrahedron Letters, 2007, 48, 7668-7670.	0.7	49
26	KF/Al2O3 and PEG-400 as a recyclable medium for the selective α-selenation of aldehydes and ketones. Preparation of potential antimicrobial agents. Tetrahedron Letters, 2009, 50, 6761-6763.	0.7	49
27	Green synthesis of (â~')-isopulegol from (+)-citronellal: application to essential oil of citronella. Tetrahedron Letters, 2003, 44, 3605-3608.	0.7	48
28	Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions. Journal of the Brazilian Chemical Society, 2009, 20, 93-99.	0.6	48
29	Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Letters, 2017, 58, 3734-3738.	0.7	48
30	Clean and atom-economic synthesis of octahydroacridines: application to essential oil of citronella. Tetrahedron Letters, 2003, 44, 6809-6812.	0.7	47
31	Synthesis of vinyl sulfides via hydrothiolation of alkynes using Al2O3/KF under solvent-free conditions. Tetrahedron Letters, 2008, 49, 1927-1930.	0.7	47
32	Metal and base-free synthesis of arylselanyl anilines using glycerol as a solvent. Green Chemistry, 2014, 16, 3854.	4.6	47
33	Selenonium ionic liquid as an efficient catalyst for the synthesis of thioacetals under solvent-free conditions. Tetrahedron Letters, 2008, 49, 1919-1921.	0.7	43
34	Synthesis of ketene (S, Te)acetals and their transformation into Z-α-phenylthio-α,β-unsaturated aldehydes. Tetrahedron, 1999, 55, 7421-7432.	1.0	42
35	Synthesis of vinyl selenides and tellurides using PEG-400. Arkivoc, 2009, 2009, 221-227.	0.3	40
36	A Selenium-Based Ionic Liquid as a Recyclable Solvent for the Catalyst-Free Synthesis of 3-Selenylindoles. Molecules, 2013, 18, 4081-4090.	1.7	39

#	Article	IF	CITATIONS
37	Direct Synthesis of 4â€Organylselanylpyrazoles by Copper―Catalyzed Oneâ€Pot Cyclocondensation and CH Bond Selenylation Reactions. Advanced Synthesis and Catalysis, 2015, 357, 4041-4049.	2.1	39
38	Synthesis of 4-Organoselanyl-1H-pyrazoles: Oxone®-Mediated Electrophilic Cyclization of α,β-Alkynyl Hydrazones by Using Diorganyl Diselenides. Synthesis, 2019, 51, 2293-2304.	1.2	38
39	Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. Applied Sciences (Switzerland), 2021, 11, 5024.	1.3	38
40	Solvent-free conjugated addition of thiols to citral using KF/alumina: preparation of 3-thioorganylcitronellals, potential antimicrobial agents. Tetrahedron Letters, 2007, 48, 6763-6766.	0.7	36
41	Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface. Tetrahedron Letters, 2012, 53, 5402-5406.	0.7	36
42	Glycerol/hypophosphorous acid: an efficient system solvent-reducing agent for the synthesis of 2-organylselanyl pyridines. Tetrahedron Letters, 2013, 54, 3215-3218.	0.7	36
43	αâ€Keto Acids as Acylating Agents in the Synthesis of 2â€6ubstituted Benzothiazoles and Benzoselenazoles. European Journal of Organic Chemistry, 2017, 2017, 3830-3836.	1.2	36
44	Niobium-promoted reaction of α-phenylglyoxylic acid with ortho-functionalized anilines: synthesis of 2-arylbenzothiazoles and 3-aryl-2H-benzo[b][1,4]benzoxazin-2-ones. Green Chemistry, 2016, 18, 6675-6680.	4.6	35
45	Selenomethoxylation of Alkenes Promoted by Oxone®. European Journal of Organic Chemistry, 2018, 2018, 1224-1229.	1.2	34
46	Addition of chalcogenolate anions to terminal alkynes using microwave and solvent-free conditions: easy access to bis-organochalcogen alkenes. Tetrahedron Letters, 2006, 47, 935-938.	0.7	33
47	Synthesis of 2,3-bis-organochalcogenyl-benzo[<i>b</i>]chalcogenophenes promoted by Oxone®. New Journal of Chemistry, 2019, 43, 6323-6331.	1.4	33
48	Synthesis of novel selenium and tellurium-containing tetrazoles: a class of chalcogen compounds with antifungal activity. Tetrahedron Letters, 2012, 53, 3091-3094.	0.7	32
49	Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. European Journal of Medicinal Chemistry, 2014, 75, 448-459.	2.6	32
50	Cul/glycerol mediated stereoselective synthesis of 1,2-bis-chalcogen alkenes from terminal alkynes: synthesis of new antioxidants. Tetrahedron Letters, 2014, 55, 5275-5279.	0.7	32
51	Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorganic and Medicinal Chemistry, 2017, 25, 6718-6723.	1.4	32
52	The first synthesis of β-phenylchalcogeno-α,β-unsaturated esters via hydrochalcogenation of acetylenes using microwave and solvent-free conditions. Tetrahedron Letters, 2005, 46, 1679-1682.	0.7	31
53	Organochalcogen compounds from glycerol: Synthesis of new antioxidants. Bioorganic and Medicinal Chemistry, 2014, 22, 6242-6249.	1.4	30
54	Photocatalytic Synthesis of 3â€Sulfanyl―and 1,3â€Bis(sulfanyl)indolizines Mediated by Visible Light. European Journal of Organic Chemistry, 2020, 2020, 2110-2115.	1.2	30

#	Article	IF	CITATIONS
55	Ultrasoundâ€Promoted Radical Synthesis of 5â€Methylselanylâ€4,5â€dihydroisoxazoles. European Journal of Organic Chemistry, 2020, 2020, 586-592.	1.2	30
56	Bioactivity and morphological changes of bacterial cells after exposure to 3-(p-chlorophenyl)thio citronellal. LWT - Food Science and Technology, 2014, 59, 813-819.	2.5	29
57	Copper Catalysis and Organocatalysis Showing the Way: Synthesis of Seleniumâ€Containing Highly Functionalized 1,2,3â€Triazoles. Chemical Record, 2018, 18, 527-542.	2.9	29
58	Synthesis of (Z)-organylthioenynes using KF/Al2O3/solvent as recyclable system. Tetrahedron Letters, 2011, 52, 133-135.	0.7	28
59	Glycerol as a recyclable solvent in a microwave-assisted synthesis of disulfides. Green Chemistry Letters and Reviews, 2012, 5, 329-336.	2.1	28
60	Selenium dioxide-promoted selective synthesis of mono- and bis-sulfenylindoles. Organic Chemistry Frontiers, 2018, 5, 1983-1991.	2.3	28
61	Catalyst-free synthesis of octahydroacridines using glycerol as recyclable solvent. Tetrahedron Letters, 2011, 52, 2571-2574.	0.7	27
62	Further analysis of the antimicrobial activity of α-phenylseleno citronellal and α-phenylseleno citronellol. Food Control, 2012, 23, 95-99.	2.8	27
63	Glycerol/CuI/Zn as a recyclable catalytic system for synthesis of vinyl sulfides and tellurides. Tetrahedron Letters, 2013, 54, 3475-3480.	0.7	27
64	Synthesis of Cross-Conjugated Geminal Enediynes via Palladium Catalyzed Cross-Coupling Reaction of Ketene Butyltelluroacetals. Synlett, 2002, 2002, 0975-0977.	1.0	26
65	Phenyltelluroacrylonitriles and phenylselenoacrylonitriles as precursors of (Z)-α-phenylseleno-α,β-unsaturated aldehydes, β-amino-α-phenylselenonitriles and Diels–Alder adducts. Tetrahedron, 2001, 57, 5953-5959.	1.0	25
66	Hydroselenation of alkynes using NaBH4/BMIMBF4: easy access to vinyl selenides. Tetrahedron Letters, 2007, 48, 8011-8013.	0.7	25
67	Highly stereoselective method to prepare bis-phenylchalcogen alkenes via addition of chalcogenolate to phenylseleno alkynes. Tetrahedron Letters, 2012, 53, 2066-2069.	0.7	25
68	Synthesis of 5 <i>H</i> ‣elenopheno[3,2â€ <i>c</i>]isochromenâ€5â€ones Promoted by Dialkyl Diselenides and Oxone®. Advanced Synthesis and Catalysis, 2019, 361, 3403-3411.	2.1	25
69	Synthesis of beta-phenylchalcogeno-alpha, beta-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions. Journal of the Brazilian Chemical Society, 2007, 18, 943-950.	0.6	24
70	Glycerol as a promoting and recyclable medium for catalyst-free synthesis of linear thioethers: new antioxidants from eugenol. Green Chemistry Letters and Reviews, 2013, 6, 269-276.	2.1	24
71	Twice acting antioxidants: synthesis and antioxidant properties of selenium and sulfur-containing zingerone derivatives. Tetrahedron Letters, 2015, 56, 2243-2246.	0.7	24
72	Oxone®-mediated direct arylselenylation of imidazo[2,1-b]thiazoles, imidazo[1,2-a]pyridines and 1H-pyrazoles. Tetrahedron, 2018, 74, 4242-4246.	1.0	24

#	Article	IF	CITATIONS
73	Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity. Mini-Reviews in Organic Chemistry, 2019, 16, 589-601.	0.6	24
74	Simple cleavage of diorganyl diselenides with NaBH4/PEG-400 and direct Michael addition to electron-deficient alkenes. Tetrahedron Letters, 2013, 54, 1718-1721.	0.7	23
75	Simple and catalyst-free method for the synthesis of diaryl selenides by reactions of arylselenols and arenediazonium salts. Tetrahedron Letters, 2014, 55, 1057-1061.	0.7	23
76	Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules, 2020, 25, 5907.	1.7	23
77	Oxone-Promoted Synthesis of 4-(Chalcogenyl)isoquinoline- <i>N</i> -oxides from Alkynylbenzaldoximes and Diorganyl Dichalcogenides. Journal of Organic Chemistry, 2021, 86, 1721-1729.	1.7	23
78	Synthesis of 1â€ <i>H</i> â€1,5â€benzodiazepines derivatives using SiO ₂ /ZnCl ₂ . Heteroatom Chemistry, 2011, 22, 180-185.	0.4	22
79	A simple and stereoselective synthesis of (Z)-1,2-bis-arylselanyl alkenes from alkynes using KF/Al2O3. Tetrahedron, 2012, 68, 10414-10418.	1.0	22
80	Copperâ€Catalyzed Multicomponent Reactions: Synthesis of Fused 1,2,3â€Triazoloâ€1,3,6â€triazonines. European Journal of Organic Chemistry, 2017, 2017, 2579-2586.	1.2	22
81	Ultrasound-enhanced Ag-catalyzed decarboxylative coupling between α-keto acids and disulfides for the synthesis of thioesters. Ultrasonics Sonochemistry, 2018, 49, 41-46.	3.8	22
82	Ultrasound-Promoted One-Pot Synthesis of Mono- or Bis-Substituted Organylselanyl Pyrroles. Journal of Organic Chemistry, 2019, 84, 5471-5482.	1.7	22
83	Synthesis of ketene phenyltelluroacetals by a Wittig-Horner route. Tetrahedron Letters, 1995, 36, 7361-7362.	0.7	21
84	Antiparasitic activity of 1,3-dioxolanes containing tellurium in Trichomonas vaginalis. Biomedicine and Pharmacotherapy, 2017, 89, 284-287.	2.5	21
85	Synthesis of Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones by Radical Cyclization of Biaryl Ynones. Journal of Organic Chemistry, 2022, 87, 4273-4283.	1.7	21
86	The use of anhydrous CeCl3 as a recyclable and selective catalyst for the acetalization of aldehydes and ketones. Journal of the Brazilian Chemical Society, 2010, 21, 371-374.	0.6	20
87	DES as a green solvent to prepare 1,2-bis-organylseleno alkenes. Scope and limitations. Tetrahedron Letters, 2015, 56, 6890-6895.	0.7	20
88	Silver-catalyzed direct selenylation of terminal alkynes through C H bond functionalization. Molecular Catalysis, 2017, 427, 73-79.	1.0	20
89	Synthesis of 4-Selanyl- and 4-Tellanyl-1 <i>H</i> -isochromen-1-ones Promoted by Diorganyl Dichalcogenides and Oxone. Journal of Organic Chemistry, 2021, 86, 14016-14027.	1.7	20
90	Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using Oxone [®] in aqueous medium as an oxidizing agent. PeerJ, 2018, 6, e4706.	0.9	20

#	Article	IF	CITATIONS
91	Clean and atom-economic synthesis of alpha-phenylselenoacrylonitriles and alpha-phenylseleno- alpha,beta-unsaturated esters by knoevenagel reaction under solvent-free conditions. Journal of the Brazilian Chemical Society, 2005, 16, 857-862.	0.6	19
92	Regioselective Synthesis of 1-Sulfanyl- and 1-Selanylindolizines. Journal of Organic Chemistry, 2019, 84, 7189-7198.	1.7	19
93	Greening the synthesis of selenium-containing heterocycles: Recent efforts and advances. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100372.	3.2	19
94	Preparation of Vinyl Tellurides via a Simplified Ylidation Reaction. Synlett, 1995, 1995, 58-60.	1.0	18
95	Synthesis and reactivity of alpha-phenylseleno-beta-substituted styrenes: preparation of (Z)-allyl alcohols, (E)-alpha-phenyl-alpha,beta-unsaturated aldehydes and alpha-aryl acetophenones. Journal of the Brazilian Chemical Society, 2006, 17, 1031-1038.	0.6	18
96	Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol. Molecules, 2017, 22, 327.	1.7	18
97	Synthesis of fused 1,2,3-triazolo-1,3,6-triazonines through copper-catalyzed intramolecular Ullmann cross-coupling reaction. Tetrahedron Letters, 2016, 57, 4885-4889.	0.7	17
98	Copper-catalyzed synthesis of 1,3,5-triaryl-4-(organylselanyl)-1H-pyrazoles by one-pot multicomponent reactions. Tetrahedron Letters, 2018, 59, 4090-4095.	0.7	17
99	Preparation of symmetrical divinyl tellurides via an ylidation reaction. Journal of Organometallic Chemistry, 1999, 584, 44-47.	0.8	16
100	Synthesis of βâ€Phenylchalcogenoâ€Î±,βâ€unsaturated Ketones via Hydrochalcogenation of Acetylenes using Microwave and Solventâ€Free Conditions. Synthetic Communications, 2006, 36, 2587-2595.	1.1	16
101	Seleniumâ€NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. Asian Journal of Organic Chemistry, 2021, 10, 91-128.	1.3	16
102	Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coordination Chemistry Reviews, 2021, 442, 214012.	9.5	16
103	New Prospective for Redox Modulation Mediated by Organo selenium and Organotellurium Compounds. Current Organic Chemistry, 2017, 21, .	0.9	16
104	Synthesis of (arylselanyl)- and (arylsulfenyl)-alkyl-1,2,3-triazolo-1,3,6-triazonines via a copper-catalyzed multicomponent reaction. Tetrahedron Letters, 2018, 59, 1080-1083.	0.7	15
105	NaBH4/[bmim]BF4: a new reducing system to access vinyl selenides and tellurides. Journal of the Brazilian Chemical Society, 2010, 21, 2093-2099.	0.6	14
106	Synthesis of [(Arylselanyl)alkyl]-1,2,3-triazoles by Copper-Catalyzed 1,3-Dipolar Cycloaddition of (Arylselanyl)alkynes with Benzyl Azides. Synthesis, 2012, 44, 1997-2004.	1.2	14
107	Polyethylene glycol-400/H ₃ PO ₂ : an eco-friendly reductive system for the synthesis of selanylesters. Organic Chemistry Frontiers, 2015, 2, 1531-1535.	2.3	14
108	Selective Synthesis of Vinyl―or Alkynyl Chalcogenides from Glycerol and their Waterâ€Soluble Derivatives. ChemistrySelect, 2016, 1, 2009-2013.	0.7	14

#	Article	IF	CITATIONS
109	Atom Efficient Preparation of Zinc Selenates for the Synthesis of Selenol Esters under "On Water― Conditions. Molecules, 2017, 22, 953.	1.7	14
110	Synthesis of vinyl sulfides using glycerol as a recyclable solvent. Arkivoc, 2011, 2011, 272-282.	0.3	14
111	Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: In vitro and in vivo antioxidant activity. Arabian Journal of Chemistry, 2020, 13, 883-899.	2.3	13
112	Synthesis of 2â€Arylâ€(3â€Organochalcogenyl)Thieno[2,3â€ <i>b</i>]Pyridines Promoted by Oxone®. Asian Journal of Organic Chemistry, 2021, 10, 1198-1206.	1.3	13
113	Synthesis of ketene phenyl- and butyltelluroacetals by a Horner–Wittig route. Tetrahedron, 2005, 61, 7712-7718.	1.0	12
114	Addition of thiols to phenylselenoalkynes using KF/Alumina under solvent-free conditions. Journal of the Brazilian Chemical Society, 2010, 21, 2125-2129.	0.6	12
115	1,1-Dibromoalkenes as versatile reagents to a transition metal-free and stereoselective synthesis of (E) Tj ETQq1	1 0.7843	14.rgBT /Ov
116	Synthesis of 2â€Organylchalcogenyl–benzo[<i>b</i>]selenophenes: 1â€(2,2â€Dibromovinyl)â€2â€butylselenanylbenzenes as Precursors to Access Alkynes Susceptible to Cyclization. ChemistrySelect, 2017, 2, 4561-4566.	0.7	12
117	Synthesis and antioxidant capacity of novel stable 5-tellurofuranose derivatives. Chemical Communications, 2018, 54, 2990-2993.	2.2	12
118	Alternative Metal-Free Synthesis of Diorganoyl Selenides and Tellurides Mediated by Oxone®. Synlett, 2018, 29, 1479-1484.	1.0	12
119	Synthesis, Molecular Docking, and Preliminary Evaluation of 2â€(1,2,3â€Triazoyl)benzaldehydes As Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemMedChem, 2020, 15, 610-622.	1.6	12
120	Transitionâ€Metalâ€Free Câ^'S, Câ^'Se, and Câ^'Te Bond Formation from Organoboron Compounds. Chemical Record, 2021, 21, 2855-2879.	2.9	12
121	Recent Advances in the Oxone-Mediated Synthesis of Heterocyclic Compounds. Molecules, 2021, 26, 7523.	1.7	12
122	Synthesis of Vinylic Chalcogenides (S, Se, Te) by Wittig and the Horner-Wittig Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 172, 55-100.	0.8	11
123	Direct Michael addition to electron-deficient alkenes using diorganyl dichalcogenides (Te/S) and NaBH4/PEG-400. Tetrahedron Letters, 2014, 55, 5652-5655.	0.7	11
124	A simple and non-conventional method for the synthesis of selected Î ² -arylalkylchalcogeno substituted alcohols, amines and carboxylic acids. Arkivoc, 2017, 2016, 376-389.	0.3	11
125	Organylselanyl αâ€Amino Phosphonates: Synthesis, NMR Spectroscopic Study, and Antioxidant and Antinociceptive Activities. European Journal of Organic Chemistry, 2018, 2018, 627-639.	1.2	11
126	Ultrasound-assisted synthesis of imidazo[1,2-a]pyridines and sequential one-pot preparation of 3-selanyl-imidazo[1,2-a]pyridine derivatives. Arkivoc, 2020, 2019, 6-23.	0.3	11

#	Article	IF	CITATIONS
127	Atom-Economic Synthesis of Functionalized Octahydroacridines from Citronellal or 3-(Phenylthio)-citronellal. Synthetic Communications, 2009, 39, 2747-2762.	1.1	10
128	Synthesis of î² -Aryl- î² -sulfanyl Ketones by a Sequential One-Pot Reaction Using KF/Al ₂ O ₃ in Glycerol. Synthetic Communications, 2014, 44, 49-58.	1.1	10
129	Synthesis and Pharmacological Evaluation of Novel Selenoethers Glycerol Derivatives for the Treatment of Pain and Inflammation: Involvement of Nitrergic and Glutamatergic Systems. Applied Biochemistry and Biotechnology, 2019, 187, 1398-1423.	1.4	10
130	Dichalcogenides/Oxone ® â€Mediated Cyclization of (Z)â€Chalcogenoenynes under Ultrasound Irradiation. ChemistrySelect, 2020, 5, 9813-9819.	0.7	10
131	Synthesis of Thiol Esters by the Reaction of Ricinoleic Acid with Thiols Under Solvent-Free Conditions. Synthetic Communications, 2011, 41, 2974-2984.	1.1	9
132	PEG-400 as a recyclable solvent in the synthesis of β-arylthio-α,β-unsaturated esters, ketone and aldehyde under base and catalyst-free conditions. Journal of Environmental Chemical Engineering, 2016, 4, 2004-2007.	3.3	9
133	Synthesis of enantiomerically pure bis(2,2-dimethyl-1,3-dioxolanylmethyl)chalcogenides and dichalcogenides. New Journal of Chemistry, 2016, 40, 2321-2326.	1.4	9
134	Modulation of COX-2, INF-É£, glutamatergic and opioid systems contributes to antinociceptive, anti-inflammatory and anti-hyperalgesic effects of bis(3-amino-2-pyridine) diselenide. Chemico-Biological Interactions, 2019, 311, 108790.	1.7	9
135	Chalcogenâ€Containing Diols: A Novel Chiral Derivatizing Agent for ⁷⁷ Se and ¹²⁵ Te NMR Chiral Recognition of Primary Amines. ChemistrySelect, 2019, 4, 4797-4803.	0.7	9
136	Sonochemistry and Copper Catalysis: An Efficient Duo in the Synthesis of Chalcogenylindolizines. Asian Journal of Organic Chemistry, 2020, 9, 1631-1637.	1.3	9
137	Glycerol as Renewable Resource in the Synthesis of Thioethers Using KF/Al ₂ 0 ₃ . Current Green Chemistry, 2014, 1, 115-120.	0.7	9
138	Structural diversity in the products formed by the reactions of 2-arylselanyl pyridine derivatives and dihalogens. New Journal of Chemistry, 2018, 42, 10592-10602.	1.4	8
139	Synthesis of benzo[b]chalcogenophenes fused to selenophenes via intramolecular electrophilic cyclization of 1,3-diynes. Organic and Biomolecular Chemistry, 2021, 19, 596-604.	1.5	8
140	A greener protocol for the synthesis of phosphorochalcogenoates: Antioxidant and free radical scavenging activities. European Journal of Medicinal Chemistry, 2021, 213, 113052.	2.6	8
141	A Convenient Synthesis of Arylselenoacetals and α-Halo-α-(phenylseleno)alkanes. Synthetic Communications, 1995, 25, 117-126.	1.1	7
142	Microwave Assisted Rapid Synthesis of (Arylselanyl)phenyl-1H-1,2,3-triazoles by Copper Catalyzed 1,3-Dipolar Cycloaddition. Current Microwave Chemistry, 2015, 3, 14-23.	0.2	7
143	Water-Dependent Selective Synthesis of Mono- or Bis-Selanyl Alkenes from Terminal Alkynes. ChemistrySelect, 2016, 1, 4289-4294.	0.7	7
144	Selective synthesis of 4-thiomethyl-1,3-dioxolan-2-ones under microwave irradiation using an environmentally benign KF/Al2O3/PEG-400 system. Research on Chemical Intermediates, 2016, 42, 5873-5885.	1.3	7

#	Article	IF	CITATIONS
145	NMR chiral discrimination of chalcogen containing secondary alcohols. Chirality, 2019, 31, 41-51.	1.3	7
146	Synthesis of 2-(Arylselanyl)benzo[b]chalcogenophenes via Intramolecular Cyclization of Vinyl Selenides. Synthesis, 2019, 51, 578-586.	1.2	7
147	Visible light-promoted synthesis of 2-aryl-(3-organoselanyl)thieno[2,3- <i>b</i>]pyridines. Green Chemistry Letters and Reviews, 2022, 15, 373-382.	2.1	7
148	KF/Al ₂ O ₃ as a Green System for the Synthesis of Organochalcogen Compounds. Current Green Chemistry, 2016, 3, 4-17.	0.7	6
149	Synthesis of Terminal Ethynyl Aryl Selenides and Sulfides Based on the Retroâ€Favorskii Reaction of Hydroxypropargyl Precursors. Chemistry - A European Journal, 2017, 23, 13760-13765.	1.7	6
150	Synthesis of 2-organylselenopheno[2,3-b]pyridines and 1,6-diazaselenanthrenes via radical cascade reactions using tert-butyl nitrite. Arkivoc, 2020, 2019, 50-64.	0.3	6
151	Ultrasound and Oxone® promoting regioselective selenofunctionalization of chromone. Arkivoc, 2020, 2020, 276-286.	0.3	6
152	Synthesis of (Z)-N-alkenyl-β-arylselanyl imidazoles via additive-free nucleophilic addition of imidazole to arylselanylalkynes. Tetrahedron Letters, 2014, 55, 992-995.	0.7	5
153	Se - [(2,2-Dimethyl-1,3-dioxolan-4-yl) methyl] 4-chlorobenzoselenolate reduces the nociceptive and edematogenic response by chemical noxious stimuli in mice: Implications of multi-target actions. Pharmacological Reports, 2019, 71, 1201-1209.	1.5	5
154	Synthesis of 3,4-Bis(Butylselanyl)Selenophenes and 4-Alkoxyselenophenes Promoted by Oxone®. Molecules, 2021, 26, 2378.	1.7	5
155	Glycerol as a Solvent in Organic Synthesis. Revista Virtual De Quimica, 2017, 9, 192-237.	0.1	5
156	UVA Lightâ€promoted Catalystâ€free Cyclization of Vinyl Selenides: Green and Efficient Synthesis of C3â€Unsubstituted 2â€Gelanyl Benzochalcogenophenes. Chemistry - an Asian Journal, 2022, 17, e202101394.	1.7	5
157	Tellurium-promoted stereoselective hydrodebromination of 1,1-dibromoalkenes: synthesis of (E)-bromoalkenes. RSC Advances, 2016, 6, 103657-103661.	1.7	4
158	Et ₂ NHâ€Mediated 1,3â€Dipolar Cycloaddition: Synthesis of 1â€{2â€{Organylselanyl)pyridinâ€3â€yl)â€1 <i>H</i> â€1,2,3â€triazoleâ€4â€carboxylate Derivatives. ChemistryS6 6645-6649.	el æct, 2011	7,4,
159	Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes. Molecules, 2017, 22, 391.	1.7	4
160	Synthesis of 2â€Organylchalcogenopheno[2,3―b]pyridines from Elemental Chalcogen and NaBH 4 /PEGâ€400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem, 2020, 15, 1741-1751.	1.6	4
161	Rongalite®/PEG-400 as reducing system in the synthesis of new glycerol-derived selenol esters using anhydrides and bis-(2,2-dimethyl-1,3-dioxolanylmethyl)diselenide as substrates. Arkivoc, 2017, 2017, 138-148.	0.3	4
162	Selective Synthesis of 4â€Chalcogenylmethylâ€1,3â€dioxolanâ€2â€ones and 1,3â€Bis(organylchalcogenyl)propanâ€2â€ols from 3â€ <i>O</i> â€Tosyl Glycerol 1,2â€Carbonate. ChemistrySele 2016, 1, 6238-6242.	ctg.7	2

#	Article	IF	CITATIONS
163	Synthesis of alkynyltellurides mediated by K ₃ PO ₄ and DMSO. New Journal of Chemistry, 2019, 43, 11091-11098.	1.4	2
164	Elemental Chalcogen (Se, S) in PEC-400 to the Synthesis of Seleno- and Thioflavones from 2-Chlorophenyl Ethynyl Ketone and Nucleophilic Species of Chalcogen. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
165	Bis-(3-amino-2-pyridine) diselenide improves psychiatric disorders –atopic dermatitis comorbidity by regulating inflammatory and oxidative status in mice. Chemico-Biological Interactions, 2021, 345, 109564.	1.7	2
166	Synthesis of 4-Arylselanylpyrazoles Through Cyclocondensation Reaction Using Glycerol as Solvent. Journal of the Brazilian Chemical Society, 2015, , .	0.6	2
167	Oxyselenocyclization of 2â€Allylphenols for the Synthesis of 2,3â€Dihydrobenzofuran Selenides. ChemistrySelect, 2021, 6, 13884-13889.	0.7	2
168	Synthesis of 3-(1H-1,2,3-Triazol-1-yl)-2-(arylselanyl)pyridines by Copper-Catalyzed 1,3-Dipolar Cycloaddition of 2-(Arylselanyl)-3-azido-pyridines with Terminal Alkynes. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
169	Selective Synthesis of (Z)-Chalcogenoenynes and (Z,Z)-1,4-bis-Chalcogenbuta-1,3-dienes Using PEG-400. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
170	Synthesis of Organosulfur and Organoselenium Derivatives from Castor Oil. Revista Virtual De Quimica, 2014, 6, .	0.1	1
171	Clean and Atom-Economic Synthesis of Octahydroacridines: Application to Essential Oil of Citronella ChemInform, 2003, 34, no.	0.1	0
172	The First Synthesis of β-Phenylchalcogeno-α,β-Unsaturated Esters via Hydrochalcogenation of Acetylenes Using Microwave and Solvent-Free Conditions ChemInform, 2005, 36, no.	0.1	0
173	Synthesis of Ketene Phenyl- and Butyltelluroacetals by a Horner—Wittig Route ChemInform, 2005, 36, no.	0.1	0
174	Quinolines-1,2,3-triazolylcarboxamides exhibits antiparasitic activity in Trichomonas vaginalis. Biotechnology Research and Innovation, 2019, 3, 265-274.	0.3	0
175	6. Synthesis of organoselenium compounds using nonconventional reaction media. , 2020, , 193-276.		0
176	Se-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl] 4-Chlorobenzoselenolate Attenuates Inflammatory Response, Nociception, and Affective Disorders Related to Rheumatoid Arthritis in Mice. ACS Chemical Neuroscience, 2021, 12, 3760-3771.	1.7	0
177	Glycerol/Hypophosphorous Acid and PhSeSePh: An Efficient and Selective System for Reactions in the Carbon-Carbon Double Bond of (E)-Chalcones. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
178	Oneâ€Pot Synthesis and <i>in Silico</i> Molecular Docking Studies of Arylselanyl Hydrazides as Potential Antituberculosis Agents. Chemistry and Biodiversity, 2022, 19, .	1.0	0
179	Alternative energy source: synthesis of selenium compounds. , 2022, , 31-82.		0