Barbora BranskÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735190/publications.pdf Version: 2024-02-01

RADRODA RDANSKÃ:

#	Article	IF	CITATIONS
1	Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Advances, 2022, 58, 107889.	11.7	6
2	Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics, 2021, 113, 1109-1119.	2.9	9
3	Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data. Frontiers in Microbiology, 2021, 12, 640054.	3.5	4
4	Effect of a Monascus sp. Red Yeast Rice Extract on Germination of Bacterial Spores. Frontiers in Microbiology, 2021, 12, 686100.	3.5	2
5	Diversity and Evolution of Clostridium beijerinckii and Complete Genome of the Type Strain DSM 791T. Processes, 2021, 9, 1196.	2.8	5
6	Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Applied Microbiology and Biotechnology, 2021, 105, 877-889.	3.6	3
7	Deeper below the surface—transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. MicrobiologyOpen, 2021, 10, e1146.	3.0	5
8	Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renewable Energy, 2020, 145, 1941-1948.	8.9	31
9	Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance. Frontiers in Bioengineering and Biotechnology, 2020, 8, 598392.	4.1	6
10	Microbial production of butanol from food industry waste. , 2020, , 163-180.		1
11	Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS ONE, 2019, 14, e0224560.	2.5	19
12	Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or	3.4	39
13	A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock. Biotechnology for Biofuels, 2019, 12, 243.	6.2	18
14	Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnology for Biofuels, 2019, 12, 219.	6.2	10
15	Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Scientific Reports, 2019, 9, 1371.	3.3	48
16	Title is missing!. , 2019, 14, e0224560.		0
17	Title is missing!. , 2019, 14, e0224560.		0
18	Title is missing!. , 2019, 14, e0224560.		0

BARBORA BRANSKÃI

#	Article	IF	CITATIONS
19	Title is missing!. , 2019, 14, e0224560.		О
20	Comparative analysis of high butanol tolerance and production in clostridia. Biotechnology Advances, 2018, 36, 721-738.	11.7	46
21	Use of wheat straw and chicken feather hydrolysates as a complete medium for lactic acid production. Czech Journal of Food Sciences, 2018, 36, 146-153.	1.2	11
22	Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics, 2018, 19, 415.	2.8	17
23	Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnology for Biofuels, 2018, 11, 99.	6.2	29
24	Production and cleavage of a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. Folia Microbiologica, 2018, 63, 773-787.	2.3	4
25	Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Applied Microbiology and Biotechnology, 2017, 101, 8279-8291.	3.6	12
26	Transformation of raw feather waste into digestible peptides and amino acids. Journal of Chemical Technology and Biotechnology, 2016, 91, 1629-1637.	3.2	50
27	Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiology Letters, 2016, 363, fnw031.	1.8	33
28	Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. Journal of Biotechnology, 2015, 216, 29-35.	3.8	32
29	Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. Journal of Biotechnology, 2015, 214, 113-114.	3.8	24
30	Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnology Advances, 2015, 33, 1091-1107.	11.7	151
31	Monascus Secondary Metabolites. , 2015, , 1-31.		0
32	Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe, 2014, 29, 113-117.	2.1	13
33	Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut+. Journal of Biotechnology, 2012, 157, 180-188.	3.8	52
34	Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiologica, 2012, 57, 307-311.	2.3	16
35	Application of Flow Cytometry to Saccharomyces cerevisiae Population Analysis. Chimia, 2005, 59, 745-748.	0.6	4
36	Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination, 2004, 162, 361-372.	8.2	115

#	Article	IF	CITATIONS
37	Thermophilic bacteria colony growth and its consequences in the food industry. Czech Journal of Food Sciences, 2004, 22, 1-8.	1.2	1
38	Comparison of Lactic Acid Production by L. casei in Batch, Fed-batch and Continuous Cultivation, Testing the use of Feather Hydrolysate as a Complex Nitrogen Source. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	9