Filiz Kuralay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7351505/publications.pdf Version: 2024-02-01

<u>ΕΠΙΖΚΠΟΛΙΑΥ</u>

#	Article	IF	CITATIONS
1	Nucleic Acid Integrated Technologies for Electrochemical Pointâ€of are Diagnostics: A Comprehensive Review. Electroanalysis, 2022, 34, 148-160.	2.9	7
2	Graphene supported poly(3-aminophenylboronic acid) surface via constant potential electrolysis for facile and sensitive paracetamol determination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127846.	4.7	5
3	Functionalized nanomaterial- based electrochemical sensors for point-of-care devices. , 2022, , 309-335.		1
4	Platinum nanoparticles loaded carbon black: reduced graphene oxide hybrid platforms for label-free electrochemical DNA and oxidative DNA damage sensing. Journal of Electroanalytical Chemistry, 2022, 910, 116180.	3.8	5
5	WS2 integrated PEDOT:PSS interface as a sensitive and selective voltammetric epirubicin detection platform and a functional actuator. Surfaces and Interfaces, 2022, 30, 101839.	3.0	3
6	Current status of micro/nanomotors in drug delivery. Journal of Drug Targeting, 2021, 29, 29-45.	4.4	25
7	Electrochemical Determination of Mitomycin C and Its Interaction with Double-Stranded DNA Using a Poly(o-phenylenediamine)-Multi-Walled Carbon Nanotube Modified Pencil Graphite Electrode. Analytical Letters, 2021, 54, 1295-1308.	1.8	8
8	Gold–Nickel Nanowires as Nanomotors for Cancer Marker Biodetection and Chemotherapeutic Drug Delivery. ACS Applied Nano Materials, 2021, 4, 3377-3388.	5.0	37
9	MoS2/Chitosan/GOx-Gelatin modified graphite surface: Preparation, characterization and its use for glucose determination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115215.	3.5	13
10	Designing functional materials: DNA/Poly(3,4-ethylenedioxythiophene) interfaces for advanced DNA direct electrochemistry and DNA-Drug interaction detection. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115382.	3.5	6
11	A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination. Sensors and Actuators B: Chemical, 2021, 346, 130425.	7.8	35
12	Chitosan functionalized gold-nickel bimetallic magnetic nanomachines for motion-based deoxyribonucleic acid recognition. International Journal of Biological Macromolecules, 2021, 193, 370-377.	7.5	8
13	Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions Critical Reviews in Analytical Chemistry, 2021, , 1-22.	3.5	Ο
14	Fabrication of selfâ€functionalized polymeric surfaces and their application in electrochemical acetaminophen detection. Journal of Applied Polymer Science, 2020, 137, 49572.	2.6	6
15	RF plasma-enhanced conducting Polymer/W5O14 based self-propelled micromotors for miRNA detection. Analytica Chimica Acta, 2020, 1138, 69-78.	5.4	14
16	Direct Electrochemistry and Sensitive Detection of Guanosine on Nanopolymeric Surfaces Bearing Boronic Acid Groups. ChemistrySelect, 2020, 5, 9134-9142.	1.5	1
17	Polypyrroleâ€Based Nanohybrid Electrodes: Their Preparation and Potential Use for DNA Recognition and Paclitaxel Quantification. ChemistrySelect, 2020, 5, 4708-4714.	1.5	7
18	Ultrathin polypyrrole films on <scp>selfâ€assembled</scp> monolayers as an efficient ultramicroelectrode assay. Journal of Applied Polymer Science, 2020, 137, 49313.	2.6	2

FILIZ KURALAY

#	Article	IF	CITATIONS
19	Electroactive polyglycine coatings for nanobiosensing applications: Label-free DNA hybridization, DNA-Antitumor agent interaction and antitumor agent determination. Analytica Chimica Acta, 2019, 1072, 15-24.	5.4	13
20	Highly sensitive and selective dopamine sensing in biological fluids with one-pot prepared graphene/poly(o-phenylenediamine) modified electrodes. Materials Chemistry and Physics, 2019, 228, 357-362.	4.0	22
21	Determination of hydrogen peroxide with an enzymeless amperometric sensor based on poly(vinylferrocene)-supported Ag nanoparticles. Turkish Journal of Chemistry, 2018, 42, 1755-1767.	1.2	2
22	Preparation of self-propelled Cu-Pt micromotors and their application in miRNA monitoring. Turkish Journal of Chemistry, 2018, 42, 1744-1754.	1.2	8
23	Polyâ€Lâ€lysine Coated Surfaces for Ultrasensitive Nucleic Acid Detection. Electroanalysis, 2018, 30, 1556-1565.	2.9	27
24	Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application. Optical Materials, 2017, 70, 171-179.	3.6	22
25	Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer. Biosensors and Bioelectronics, 2017, 93, 87-93.	10.1	117
26	Biosensing applications of titanium dioxide coated graphene modified disposable electrodes. Talanta, 2016, 160, 325-331.	5.5	31
27	Electrochemistry of poly(5-phenyl dipyrromethane) and its characterization. Polymer Bulletin, 2015, 72, 867-879.	3.3	5
28	Preparation of gold nanoparticles/single-walled carbon nanotubes/polyaniline composite-coated electrode developed for DNA detection. Polymer Bulletin, 2015, 72, 3135-3146.	3.3	18
29	Poly(vinylferrocene)/Cellulose Acetate Fibers: A New Approach for In-Situ Monitoring Process Through QCM and Electrospinning Studies. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 544-550.	3.7	3
30	Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation. , 2015, , 137-166.		5
31	Polymer/carbon nanotubes coated graphite surfaces for highly sensitive nitrite detection. Talanta, 2015, 144, 1133-1138.	5.5	34
32	Poly(3,4-ethylenedioxythiophene) coated chitosan modified disposable electrodes for DNA and DNA–drug interaction sensing. Colloids and Surfaces B: Biointerfaces, 2014, 123, 825-830.	5.0	34
33	Ultrasoundâ€Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small, 2014, 10, 4154-4159.	10.0	196
34	DNA Biosensors. Nanostructure Science and Technology, 2014, , 313-330.	0.1	3
35	Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis. Applied Surface Science, 2014, 303, 37-45.	6.1	48
36	Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano, 2013, 7, 9232-9240.	14.6	386

FILIZ KURALAY

#	Article	IF	CITATIONS
37	Cibacron Blue F3GA modified disposable pencil graphite electrode for the investigation of affinity binding to bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2013, 110, 270-274.	5.0	10
38	Electrochemical characterization of redox polymer modified electrode developed for monitoring of adenine. Colloids and Surfaces B: Biointerfaces, 2013, 105, 1-6.	5.0	10
39	Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode. Sensors, 2013, 13, 8079-8094.	3.8	8
40	Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-In Boronic Acid Recognition for Isolating Sugars and Cells. Journal of the American Chemical Society, 2012, 134, 15217-15220.	13.7	125
41	Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers. Talanta, 2012, 99, 155-160.	5.5	37
42	Sensitive sepiolite-carbon nanotubes based disposable electrodes for direct detection of DNA and anticancer drug–DNA interactions. Analyst, The, 2012, 137, 4001.	3.5	31
43	A Selfâ€Powered "Senseâ€Actâ€Treat―System that is Based on a Biofuel Cell and Controlled by Boolean Logic. Angewandte Chemie - International Edition, 2012, 51, 2686-2689.	13.8	139
44	Single-walled carbon nanotubes-polymer modified graphite electrodes for DNA hybridization. Colloids and Surfaces B: Biointerfaces, 2012, 91, 77-83.	5.0	24
45	Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples. Talanta, 2011, 85, 1330-1337.	5.5	45
46	The Recent Electrochemical Biosensor Technologies for Monitoring of Nucleic Acid Hybridization. Current Analytical Chemistry, 2011, 7, 63-70.	1.2	11
47	A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor. Sensors and Actuators B: Chemical, 2011, 160, 405-411.	7.8	37
48	Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosensors and Bioelectronics, 2011, 26, 3577-3583.	10.1	110
49	Interaction of Mitomycin C with DNA Immobilized onto Singleâ€walled Carbon Nanotube/Polymer Modified Pencil Graphite Electrode. Electroanalysis, 2011, 23, 2343-2349.	2.9	17
50	Carbon nanotube–chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis. Colloids and Surfaces B: Biointerfaces, 2011, 87, 18-22.	5.0	66
51	Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization. Colloids and Surfaces B: Biointerfaces, 2011, 86, 397-403.	5.0	61
52	Functionalized Micromachines for Selective and Rapid Isolation of Nucleic Acid Targets from Complex Samples. Nano Letters, 2011, 11, 2083-2087.	9.1	216
53	Electrochemical DNA Detection Using Carbon Nanotubes. Current Physical Chemistry, 2011, 1, 325-333.	0.2	4
54	Electrochemical DNA Detection Using Carbon Nanotubes. Current Physical Chemistry, 2011, 1, 325-333.	0.2	1

FILIZ KURALAY

#	Article	IF	CITATIONS
55	Characterization of poly(vinylferrocenium) coated surfaces and their applications in DNA sensor technology. Journal of Applied Electrochemistry, 2010, 40, 2039-2050.	2.9	11
56	Preparation and physical/electrochemical characterization of carbon nanotube–chitosan modified pencil graphite electrode. Applied Surface Science, 2010, 257, 622-627.	6.1	30
57	Tin oxide nanoparticles-polymer modified single-use sensors for electrochemical monitoring of label-free DNA hybridization. Talanta, 2010, 82, 1680-1686.	5.5	34
58	Poly(vinylferrocenium) coated disposable pencil graphite electrode for DNA hybridization. Electrochemistry Communications, 2009, 11, 1242-1246.	4.7	32
59	Characterization of redox polymer based electrode and electrochemical behavior for DNA detection. Analytica Chimica Acta, 2009, 643, 83-89.	5.4	25
60	Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system. Talanta, 2009, 78, 187-192.	5.5	19
61	Constant Current Chronopotentiometry and Voltammetry of Native and Denatured Serum Albumin at Mercury and Carbon Electrodes. Electroanalysis, 2008, 20, 1406-1413.	2.9	38
62	Electrochemical Biosensing of DNA Immobilized Poly(Vinylferrocenium) Modified Electrode. Electroanalysis, 2008, 20, 2563-2570.	2.9	26
63	Inhibitive determination of Hg2+ ion by an amperometric urea biosensor using poly(vinylferrocenium) film. Enzyme and Microbial Technology, 2007, 40, 1156-1159.	3.2	45
64	Amperometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film. Sensors and Actuators B: Chemical, 2006, 114, 500-506.	7.8	65
65	Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film. Sensors and Actuators B: Chemical, 2005, 109, 194-199.	7.8	78