
## Xiaohui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7351418/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome-wide landscape of polyadenylation in <i>Arabidopsis</i> provides evidence for extensive alternative polyadenylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12533-12538. | 3.3 | 292       |
| 2  | Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation. Nucleic Acids Research, 2008, 36, 3150-3161.                                                                                           | 6.5 | 163       |
| 3  | Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Genome Research, 2011, 21, 1478-1486.                                                 | 2.4 | 117       |
| 4  | Genome-Wide Control of Polyadenylation Site Choice by CPSF30 in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4376-4388.                                                                                                                | 3.1 | 97        |
| 5  | APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data.<br>Bioinformatics, 2018, 34, 1841-1849.                                                                                           | 1.8 | 91        |
| 6  | Genome-wide dynamics of alternative polyadenylation in rice. Genome Research, 2016, 26, 1753-1760.                                                                                                                                   | 2.4 | 65        |
| 7  | Predictive modeling of plant messenger RNA polyadenylation sites. BMC Bioinformatics, 2007, 8, 43.                                                                                                                                   | 1.2 | 52        |
| 8  | Recombinatorial Biases and Convergent Recombination Determine Interindividual TCRÎ <sup>2</sup> Sharing in Murine Thymocytes. Journal of Immunology, 2012, 189, 2404-2413.                                                           | 0.4 | 42        |
| 9  | Genome-wide identification and predictive modeling of polyadenylation sites in eukaryotes. Briefings in Bioinformatics, 2015, 16, 304-313.                                                                                           | 3.2 | 39        |
| 10 | Alternative polyadenylation is involved in auxinâ€based plant growth and development. Plant Journal, 2018, 93, 246-258.                                                                                                              | 2.8 | 38        |
| 11 | A classification-based prediction model of messenger RNA polyadenylation sites. Journal of Theoretical Biology, 2010, 265, 287-296.                                                                                                  | 0.8 | 37        |
| 12 | Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice.<br>Ecotoxicology and Environmental Safety, 2019, 183, 109485.                                                                   | 2.9 | 35        |
| 13 | A survey on identification and quantification of alternative polyadenylation sites from RNA-seq data.<br>Briefings in Bioinformatics, 2020, 21, 1261-1276.                                                                           | 3.2 | 33        |
| 14 | Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice. BMC Genomics, 2014, 15, 615.                                                                        | 1.2 | 30        |
| 15 | Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. Plant Journal, 2017, 91, 829-839.                                                                     | 2.8 | 30        |
| 16 | PlantAPAdb: A Comprehensive Database for Alternative Polyadenylation Sites in Plants. Plant<br>Physiology, 2020, 182, 228-242.                                                                                                       | 2.3 | 30        |
| 17 | Implementation of a classification-based prediction model for plant mRNA Poly(A) sites. , 2008, , .                                                                                                                                  |     | 28        |
| 18 | Using consensus interval partial least square in near infrared spectra analysis. Chemometrics and<br>Intelligent Laboratory Systems, 2015, 144, 56-62.                                                                               | 1.8 | 27        |

Хіаониі Wu

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Differential alternative polyadenylation contributes to the developmental divergence between two rice subspecies, <i>japonica</i> and <i>indica</i> . Plant Journal, 2019, 98, 260-276.                                               | 2.8 | 26        |
| 20 | Bioinformatics Analysis of Alternative Polyadenylation in Green Alga <i>Chlamydomonas<br/>reinhardtii</i> Using Transcriptome Sequences from Three Different Sequencing Platforms. G3: Genes,<br>Genomes, Genetics, 2014, 4, 871-883. | 0.8 | 25        |
| 21 | PlantAPA: A Portal for Visualization and Analysis of Alternative Polyadenylation in Plants. Frontiers<br>in Plant Science, 2016, 7, 889.                                                                                              | 1.7 | 25        |
| 22 | The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance<br>in Monocotyledonous Halophyte. Plant and Cell Physiology, 2020, 61, 882-896.                                                  | 1.5 | 25        |
| 23 | scDAPA: detection and visualization of dynamic alternative polyadenylation from single cell RNA-seq<br>data. Bioinformatics, 2020, 36, 1262-1264.                                                                                     | 1.8 | 24        |
| 24 | scAPAtrap: identification and quantification of alternative polyadenylation sites from single-cell RNA-seq data. Briefings in Bioinformatics, 2021, 22, .                                                                             | 3.2 | 24        |
| 25 | Genome-wide characterization of intergenic polyadenylation sites redefines gene spaces in Arabidopsis thaliana. BMC Genomics, 2015, 16, 511.                                                                                          | 1.2 | 17        |
| 26 | Heat Shock Responsive Gene Expression Modulated by mRNA Poly(A) Tail Length. Frontiers in Plant<br>Science, 2020, 11, 1255.                                                                                                           | 1.7 | 17        |
| 27 | scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.<br>Bioinformatics, 2020, 36, 789-797.                                                                                                        | 1.8 | 16        |
| 28 | PASPA: a web server for mRNA poly(A) site predictions in plants and algae. Bioinformatics, 2015, 31, 1671-1673.                                                                                                                       | 1.8 | 13        |
| 29 | Genome-Wide Comparative Analyses of Polyadenylation Signals in Eukaryotes Suggest a Possible Origin of the AAUAAA Signal. International Journal of Molecular Sciences, 2019, 20, 958.                                                 | 1.8 | 12        |
| 30 | scAPAdb: a comprehensive database of alternative polyadenylation at single-cell resolution. Nucleic<br>Acids Research, 2022, 50, D365-D370.                                                                                           | 6.5 | 12        |
| 31 | Low-Rank Tensor Completion by Sum of Tensor Nuclear Norm Minimization. IEEE Access, 2019, 7, 134943-134953.                                                                                                                           | 2.6 | 11        |
| 32 | scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. BMC Genomics, 2019, 20, 347.                                                                        | 1.2 | 11        |
| 33 | AStrap: identification of alternative splicing from transcript sequences without a reference genome.<br>Bioinformatics, 2019, 35, 2654-2656.                                                                                          | 1.8 | 10        |
| 34 | In silico prediction of mRNA poly(A) sites in Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 2012, 287, 895-907.                                                                                                         | 1.0 | 9         |
| 35 | Distinct genomeâ€wide alternative polyadenylation during the response to silicon availability in the<br>marine diatom <i>Thalassiosira pseudonana</i> . Plant Journal, 2019, 99, 67-80.                                               | 2.8 | 9         |
| 36 | TSAPA: identification of tissue-specific alternative polyadenylation sites in plants. Bioinformatics, 2018, 34, 2123-2125.                                                                                                            | 1.8 | 8         |

Хіаониі Wu

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | QuantifyPoly(A): reshaping alternative polyadenylation landscapes of eukaryotes with weighted density peak clustering. Briefings in Bioinformatics, 2021, 22, .                 | 3.2 | 8         |
| 38 | movAPA: modeling and visualization of dynamics of alternative polyadenylation across biological samples. Bioinformatics, 2021, 37, 2470-2472.                                   | 1.8 | 8         |
| 39 | Modeling Plant mRNA Poly(A) Sites: Software Design and Implementation. Journal of Computational and Theoretical Nanoscience, 2007, 4, 1365-1368.                                | 0.4 | 7         |
| 40 | Poly(A)-Tag Deep Sequencing Data Processing to Extract Poly(A) Sites. Methods in Molecular Biology,<br>2015, 1255, 39-48.                                                       | 0.4 | 6         |
| 41 | scLINE: A multi-network integration framework based on network embedding for representation of single-cell RNA-seq data. Journal of Biomedical Informatics, 2021, 122, 103899.  | 2.5 | 5         |
| 42 | Computational Analysis of Plant Polyadenylation Signals. Methods in Molecular Biology, 2015, 1255, 3-11.                                                                        | 0.4 | 5         |
| 43 | Ratio-Based Analysis of Differential mRNA Processing and Expression of a Polyadenylation Factor<br>Mutant pcfs4 Using Arabidopsis Tiling Microarray. PLoS ONE, 2011, 6, e14719. | 1.1 | 5         |
| 44 | Regulatory network-based imputation of dropouts in single-cell RNA sequencing data. PLoS<br>Computational Biology, 2022, 18, e1009849.                                          | 1.5 | 5         |
| 45 | Modeling of Genome-Wide Polyadenylation Signals in Xenopus tropicalis. Frontiers in Genetics, 2019,<br>10, 647.                                                                 | 1.1 | 4         |
| 46 | PAcluster: Clustering polyadenylation site data using canonical correlation analysis. Journal of Bioinformatics and Computational Biology, 2017, 15, 1750018.                   | 0.3 | 3         |
| 47 | DNA/RNA Hybrid Primer Mediated Poly(A) Tag Library Construction for Illumina Sequencing. Methods<br>in Molecular Biology, 2015, 1255, 175-184.                                  | 0.4 | 3         |
| 48 | Prediction of Plant mRNA Polyadenylation Sites. Methods in Molecular Biology, 2015, 1255, 13-23.                                                                                | 0.4 | 3         |
| 49 | Messenger RNA Polyadenylation Site Recognition in Green Alga Chlamydomonas Reinhardtii. Lecture<br>Notes in Computer Science, 2010, , 17-26.                                    | 1.0 | 3         |
| 50 | Implementation of a Classification-Based Prediction Model for Plant mRNA Poly(A)Sites. Journal of Computational and Theoretical Nanoscience, 2010, 7, 927-932.                  | 0.4 | 2         |
| 51 | Nonconvex Low Tubal Rank Tensor Minimization. IEEE Access, 2019, 7, 170831-170843.                                                                                              | 2.6 | 2         |
| 52 | Data Analysis of Arabidopsis Tiling Array. , 2009, , .                                                                                                                          |     | 0         |
| 53 | PROBER: Segmentation and Differential Analysis Tool for Tiling Microarray Data. , 2009, , .                                                                                     |     | 0         |
|    |                                                                                                                                                                                 |     |           |

Хіаониі Wu

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of plant messenger RNA polyadenylation sites using length-variable second order<br>Markov model. , 2011, , .                          |     | 0         |
| 56 | High-throughput antibody sequence alignment based on GPU computing. , 2012, , .                                                                      |     | 0         |
| 57 | Characterization and prediction of mRNA alternative polyadenylation sites in rice genes. Bio-Medical Materials and Engineering, 2014, 24, 3779-3785. | 0.4 | 0         |
| 58 | Genome-wide analysis of the associations between polyadenylation sites and repeated sequences in<br>Arabidopsis thaliana. , 2015, , .                |     | 0         |
| 59 | VAAPA: A web platform for visualization and analysis of alternative polyadenylation. Computers in Biology and Medicine, 2015, 57, 20-25.             | 3.9 | 0         |
| 60 | A two-layer model for gene clustering using poly(A) site data. , 2017, , .                                                                           |     | 0         |
| 61 | Cluster analysis of replicated alternative polyadenylation data using canonical correlation analysis.<br>BMC Genomics, 2019, 20, 75.                 | 1.2 | 0         |
| 62 | PATMAP: Polyadenylation Site Identification from Next-Generation Sequencing Data. Lecture Notes in Computer Science, 2012, , 485-496.                | 1.0 | 0         |
| 63 | Characterization and Recognition of <1>mRNA Alternative Polyadenylation Signals. Advanced Science Letters. 2012. 9. 811-816.                         | 0.2 | 0         |