Marcelo Assis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350829/publications.pdf

Version: 2024-02-01

393982 433756 1,323 69 19 31 citations h-index g-index papers 70 70 70 1156 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	ZnWO ₄ nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Physical Chemistry Chemical Physics, 2018, 20, 1923-1937.	1.3	103
2	Surfactant-Mediated Morphology and Photocatalytic Activity of \hat{l}_{\pm} -Ag ₂ WO ₄ Material. Journal of Physical Chemistry C, 2018, 122, 8667-8679.	1.5	60
3	Mechanism of Antibacterial Activity via Morphology Change of α-AgVO ₃ : Theoretical and Experimental Insights. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11472-11481.	4.0	53
4	Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Applied Catalysis B: Environmental, 2018, 238, 198-211.	10.8	53
5	Rare earth doped silver tungstate for photoluminescent applications. Journal of Alloys and Compounds, 2019, 771, 433-447.	2.8	49
6	An Experimental and Computational Study of \hat{l}^2 -AgVO $<$ sub $>$ 3 $<$ /sub $>$: Optical Properties and Formation of Ag Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 12254-12264.	1.5	48
7	A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceramics International, 2015, 41, 3069-3074.	2.3	45
8	Unvealing the role of \hat{l}^2 -Ag2MoO4 microcrystals to the improvement of antibacterial activity. Materials Science and Engineering C, 2020, 111, 110765.	3.8	44
9	Towards the scale-up of the formation of nanoparticles on \hat{l}_{\pm} -Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Scientific Reports, 2018, 8, 1884.	1.6	42
10	SiO2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. Nanomaterials, 2021, 11, 638.	1.9	41
11	Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Scientific Reports, 2019, 9, 9927.	1.6	40
12	Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag ₂ WO ₄ Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Applied Bio Materials, 2019, 2, 824-837.	2.3	30
13	Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect, 2020, 5, 4655-4673.	0.7	29
14	Microwave-assisted hydrothermal synthesis of CuWO4-palygorskite nanocomposite for enhanced visible photocatalytic response. Journal of Alloys and Compounds, 2021, 863, 158731.	2.8	29
15	Microwave-Driven Hexagonal-to-Monoclinic Transition in BiPO ₄ : An In-Depth Experimental Investigation and First-Principles Study. Inorganic Chemistry, 2020, 59, 7453-7468.	1.9	24
16	Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO ₃ :Eu ³⁺ . CrystEngComm, 2018, 20, 5519-5530.	1.3	22
17	α-AgVO ₃ Decorated by Hydroxyapatite (Ca ₁₀ (PO ₄) ₆ (OH) ₂): Tuning Its Photoluminescence Emissions and Bactericidal Activity. Inorganic Chemistry, 2019, 58, 5900-5913.	1.9	22
18	Carbon Nanofibers versus Silver Nanoparticles: Time-Dependent Cytotoxicity, Proliferation, and Gene Expression. Biomedicines, 2021, 9, 1155.	1.4	21

#	Article	IF	Citations
19	Influence of ionic liquid on the photoelectrochemical properties of ZnO particles. Ceramics International, 2018, 44, 10393-10401.	2.3	20
20	Laser and electron beam-induced formation of Ag/Cr structures on Ag ₂ CrO ₄ . Physical Chemistry Chemical Physics, 2019, 21, 6101-6111.	1.3	20
21	Unconventional Magnetization Generated from Electron Beam and Femtosecond Irradiation on α-Ag ₂ WO ₄ : A Quantum Chemical Investigation. ACS Omega, 2020, 5, 10052-10067.	1.6	20
22	Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4., 0, 1, 1005.		20
23	From Complex Inorganic Oxides to Ag–Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS Omega, 2018, 3, 9880-9887.	1.6	19
24	Environmental remediation properties of Bi2WO6 hierarchical nanostructure: A joint experimental and theoretical investigation. Journal of Solid State Chemistry, 2019, 274, 270-279.	1.4	19
25	Surface-dependent properties of \hat{l} ±-Ag2WO4: a joint experimental and theoretical investigation. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	19
26	Surface-dependent photocatalytic and biological activities of Ag2CrO4: Integration of experiment and simulation. Applied Surface Science, 2021, 545, 148964.	3.1	18
27	Laser-induced formation of bismuth nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 13693-13696.	1.3	17
28	Rapid and sensitivity determination of macrolides antibiotics using disposable electrochemical sensor based on Super P carbon black and chitosan composite. Microchemical Journal, 2022, 172, 106939.	2.3	17
29	Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: First principles modeling of the excited electronic states. Journal of Alloys and Compounds, 2017, 722, 981-995.	2.8	16
30	Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 11310-11318.	1.5	16
31	Graphene Nanoplatelets: In Vivo and In Vitro Toxicity, Cell Proliferative Activity, and Cell Gene Expression. Applied Sciences (Switzerland), 2022, 12, 720.	1.3	16
32	Disclosing the electronic structure and optical properties of Ag ₄ V ₂ O ₇ crystals: experimental and theoretical insights. CrystEngComm, 2016, 18, 6483-6491.	1.3	15
33	PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material. Journal of Polymer Research, 2021, 28, 1.	1.2	15
34	In Situ Growth of Bi Nanoparticles on NaBiO ₃ , \hat{l} -, and \hat{l} 2-Bi ₂ O ₃ Surfaces: Electron Irradiation and Theoretical Insights. Journal of Physical Chemistry C, 2019, 123, 5023-5030.	1.5	14
35	Efficient Ni and Fe doping process in ZnO with enhanced photocatalytic activity: A theoretical and experimental investigation. Materials Research Bulletin, 2022, 152, 111849.	2.7	14
36	Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules, 2021, 26, 1206.	1.7	13

#	Article	IF	Citations
37	Increasing the photocatalytic and fungicide activities of Ag3PO4 microcrystals under visible-light irradiation. Ceramics International, 2021, 47, 22604-22614.	2.3	13
38	Laser/Electron Irradiation on Indium Phosphide (InP) Semiconductor: Promising Pathways to In Situ Formation of Indium Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800237.	1.2	12
39	Microwave-assisted solvothermal preparation of Zr-BDC for modification of proton exchange membranes made of SPEEK/PBI blends. Journal of Materials Science, 2020, 55, 14938-14952.	1.7	12
40	Microwave assisted synthesis of silver nanoparticles and its application in sustainable photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 34264-34275.	3.8	12
41	Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids and Interfaces, 2020, 4, 14.	0.9	11
42	Revealing the Nature of Defects in α-Ag ₂ WO ₄ by Positron Annihilation Lifetime Spectroscopy: A Joint Experimental and Theoretical Study. Crystal Growth and Design, 2021, 21, 1093-1102.	1.4	11
43	CuWO4 MnWO4 heterojunction thin film with improved photoelectrochemical and photocatalytic properties using simulated solar irradiation. Journal of Solid State Electrochemistry, 2022, 26, 997-1011.	1.2	11
44	Proofâ€ofâ€Concept Studies Directed toward the Formation of Metallic Ag Nanostructures from Ag 3 PO 4 Induced by Electron Beam and Femtosecond Laser. Particle and Particle Systems Characterization, 2019, 36, 1800533.	1.2	10
45	Bioactive Ag ₃ PO ₄ /Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens. Journal of Physical Chemistry B, 2021, 125, 10866-10875.	1.2	10
46	Multi-dimensional architecture of $Ag/l\pm -Ag < sub > 2 < /sub > WO < sub > 4 < /sub > crystals: insights into microstructural, morphological, and photoluminescence properties. CrystEngComm, 2020, 22, 7903-7917.$	1.3	9
47	Electron beam irradiation for the formation of thick Ag film on Ag ₃ PO ₄ . RSC Advances, 2020, 10, 21745-21753.	1.7	9
48	Connecting morphology and photoluminescence emissions in \hat{l}^2 -Ag2MoO4 microcrystals. Ceramics International, 2022, 48, 3740-3750.	2.3	9
49	Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4. Applied Surface Science, 2022, 600, 154081.	3.1	9
50	Structure, optical properties, and photocatalytic activity of α-Ag2W0.75Mo0.25O4. Materials Research Bulletin, 2020, 132, 111011.	2.7	8
51	Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928.	3.2	8
52	Antifungal Activity and Biocompatibility of α-AgVO3, α-Ag2WO4, and β-Ag2MoO4 Using a Three-Dimensional Coculture Model of the Oral Mucosa. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826123.	2.0	8
53	Unraveling the relationship between bulk structure and exposed surfaces and its effect on the electronic structure and photoluminescent properties of Ba0.5Sr0.5TiO3: A joint experimental and theoretical approach. Materials Research Bulletin, 2021, 143, 111442.	2.7	7
54	A scalable electron beam irradiation platform applied for allotropic carbon transformation. Carbon, 2021, 174, 567-580.	5.4	6

#	Article	IF	CITATIONS
55	New Multi-Walled carbon nanotube of industrial interest induce cell death in murine fibroblast cells. Toxicology Mechanisms and Methods, 2021, 31, 517-530.	1.3	6
56	Photoluminescence emissions of Ca1â^'WO4:xEu3+: Bridging between experiment and DFT calculations. Journal of Rare Earths, 2022, 40, 1527-1534.	2.5	6
57	Endophytic Microorganisms From the Tropics as Biofactories for the Synthesis of Metal-Based Nanoparticles: Healthcare Applications. Frontiers in Nanotechnology, 2022, 4, .	2.4	6
58	Fermented Jussara: Evaluation of Nanostructure Formation, Bioaccessibility, and Antioxidant Activity. Frontiers in Bioengineering and Biotechnology, 2022, 10, 814466.	2.0	6
59	Towards a white-emitting phosphor Ca10V6O25 based material. Journal of Luminescence, 2020, 220, 116990.	1.5	5
60	Functionalized Titanium Nanoparticles Induce Oxidative Stress and Cell Death in Human Skin Cells. International Journal of Nanomedicine, 2022, Volume 17, 1495-1509.	3.3	5
61	Effect of metallic Ag growth on the electrical resistance of 3D flowerâ€like Ag ₄ V ₂ O ₇ crystals. Journal of the American Ceramic Society, 2017, 100, 2358-2362.	1.9	4
62	Analysis of cytotoxicity and genotoxicity in a short-term dependent manner induced by a new titanium dioxide nanoparticle in murine fibroblast cells. Toxicology Mechanisms and Methods, 2022, 32, 213-223.	1.3	4
63	Toxicity of α-Ag2WO4 microcrystals to freshwater microalga Raphidocelis subcapitata at cellular and population levels. Chemosphere, 2022, 288, 132536.	4.2	4
64	Apoptosis and Oxidative Stress Triggered by Carbon Black Nanoparticle in the LA-9 Fibroblast. Cellular Physiology and Biochemistry, 2021, 55, 364-377.	1.1	3
65	Toward Expanding the Optical Response of Ag2CrO4 and Bi2O3 by Their Laser-Mediated Heterojunction. Journal of Physical Chemistry C, 2020, 124, 26404-26414.	1.5	2
66	Synthesis of ZnWO4 by the polymerizable complex method: Evidence of amorphous phase coexistence during the phase formation process. Ceramics International, 2021, 47, 19073-19078.	2.3	2
67	Effects of \hat{l}_{\pm} -Ag2WO4 crystals on photosynthetic efficiency and biomolecule composition of the algae Raphidocelis subcapitata. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	2
68	Surfactant effects in the morphology and the photocatalytic activity of the BaMoO4 crystals. Ecletica Quimica, 2022, 47, 80-89.	0.2	1
69	Luminescence and structural properties of Ca1-xZrO3:Eux: An experimental and theoretical approach. Ecletica Quimica, 2022, 47, 90-104.	0.2	1