## Vincent L Cryns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350671/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A p53–phosphoinositide signalosome regulates nuclear AKT activation. Nature Cell Biology, 2022, 24,<br>1099-1113.                                                                                             | 10.3 | 26        |
| 2  | Assessing In Situ Phosphoinositide–Protein Interactions Through Fluorescence Proximity Ligation<br>Assay in Cultured Cells. Methods in Molecular Biology, 2021, 2251, 133-142.                                | 0.9  | 6         |
| 3  | Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells<br>by inducing thioredoxin reductase. Breast Cancer Research and Treatment, 2021, 190, 373-387.        | 2.5  | 11        |
| 4  | The nuclear phosphoinositide response to stress. Cell Cycle, 2020, 19, 268-289.                                                                                                                               | 2.6  | 22        |
| 5  | Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells. Breast Cancer Research and Treatment, 2020, 183, 549-564.                                  | 2.5  | 24        |
| 6  | Synthetic Lethal Metabolic Targeting of Androgen-Deprived Prostate Cancer Cells with Metformin.<br>Molecular Cancer Therapeutics, 2020, 19, 2278-2287.                                                        | 4.1  | 10        |
| 7  | Ionizing Radiation-induced Proteomic Oxidation in Escherichia coli. Molecular and Cellular<br>Proteomics, 2020, 19, 1375-1395.                                                                                | 3.8  | 26        |
| 8  | Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and<br>Epigenetic Persistence. Molecular Cell, 2020, 78, 210-223.e8.                                              | 9.7  | 45        |
| 9  | Self-Assembled Peptide Nanostructures Targeting Death Receptor 5 and Encapsulating Paclitaxel As a<br>Multifunctional Cancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 6046-6053.           | 5.2  | 19        |
| 10 | S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast<br>Cancer Research and Treatment, 2019, 175, 39-50.                                                    | 2.5  | 55        |
| 11 | A nuclear phosphoinositide kinase complex regulates p53. Nature Cell Biology, 2019, 21, 462-475.                                                                                                              | 10.3 | 57        |
| 12 | Preclinical Breast Cancer Models to Investigate Metabolic Priming by Methionine Restriction.<br>Methods in Molecular Biology, 2019, 1866, 61-73.                                                              | 0.9  | 5         |
| 13 | Combination therapy with androgen deprivation for hormone sensitive prostate cancer: A new frontier. Asian Journal of Urology, 2019, 6, 57-64.                                                                | 1.2  | 15        |
| 14 | Methionine restriction activates the integrated stress response in triple-negative breast cancer cells<br>by a GCN2- and PERK-independent mechanism. American Journal of Cancer Research, 2019, 9, 1766-1775. | 1.4  | 6         |
| 15 | Aberrant expression of glycogen synthase kinase‑3β in human breast and head and neck cancer.<br>Oncology Letters, 2018, 16, 6437-6444.                                                                        | 1.8  | 14        |
| 16 | Shortâ€ŧerm methionine deprivation improves metabolic health <i>via</i> sexually dimorphic,<br>mTORClâ€independent mechanisms. FASEB Journal, 2018, 32, 3471-3482.                                            | 0.5  | 73        |
| 17 | Metformin Use is Associated with Improved Survival for Patients with Advanced Prostate Cancer on<br>Androgen Deprivation Therapy. Journal of Urology, 2018, 200, 1256-1263.                                   | 0.4  | 42        |
| 18 | The effects of sex and age on the metabolic response to methionine deprivation, a novel intervention for the treatment of obesity and diabetes. FASEB Journal, 2018, 32, 925.3.                               | 0.5  | 0         |

VINCENT L CRYNS

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metformin sensitizes triple-negative breast cancer to proapoptotic TRAIL receptor agonists by suppressing XIAP expression. Breast Cancer Research and Treatment, 2017, 163, 435-447.                   | 2.5  | 27        |
| 20 | Hypocalciuria as a Predictor of Reduced Intestinal Calcium Absorption. Journal of the Endocrine Society, 2017, 1, 1179-1187.                                                                           | 0.2  | 2         |
| 21 | GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Letters, 2016, 380, 384-392.                                                                                                 | 7.2  | 55        |
| 22 | αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance. Genomics Data, 2016, 9, 10-17.                                                                                 | 1.3  | 3         |
| 23 | αB-crystallin: Portrait of a malignant chaperone as a cancer therapeutic target. , 2016, 160, 1-10.                                                                                                    |      | 35        |
| 24 | $\hat{I}\pm B$ -crystallin expression in breast cancer is associated with brain metastasis. Npj Breast Cancer, 2015, 1, .                                                                              | 5.2  | 30        |
| 25 | Methionine Deprivation Induces a Targetable Vulnerability in Triple-Negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression. Clinical Cancer Research, 2015, 21, 2780-2791.              | 7.0  | 77        |
| 26 | pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies. Journal of<br>the American Chemical Society, 2014, 136, 14746-14752.                                          | 13.7 | 161       |
| 27 | NanoFlares for the detection, isolation, and culture of live tumor cells from human blood.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17104-17109. | 7.1  | 197       |
| 28 | αB-Crystallin: A Novel Regulator of Breast Cancer Metastasis to the Brain. Clinical Cancer Research,<br>2014, 20, 56-67.                                                                               | 7.0  | 87        |
| 29 | αB-Crystallin promotes oncogenic transformation and inhibits caspase activation in cells primed for apoptosis by Rb inactivation. Breast Cancer Research and Treatment, 2013, 138, 415-425.            | 2.5  | 14        |
| 30 | Coassembled Cytotoxic and Pegylated Peptide Amphiphiles Form Filamentous Nanostructures with<br>Potent Antitumor Activity in Models of Breast Cancer. ACS Nano, 2012, 6, 7956-7965.                    | 14.6 | 90        |
| 31 | Antitumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin. ACS Nano, 2011, 5, 9113-9121.                                                                                            | 14.6 | 219       |
| 32 | Minireview: Basal-Like Breast Cancer: From Molecular Profiles to Targeted Therapies. Molecular<br>Endocrinology, 2011, 25, 199-211.                                                                    | 3.7  | 138       |
| 33 | Enhanced Metastasis Suppression by Targeting TRAIL Receptor 2 in a Murine Model of Triple-Negative<br>Breast Cancer. Clinical Cancer Research, 2011, 17, 5005-5015.                                    | 7.0  | 43        |
| 34 | Induction of Cancer Cell Death by Self-assembling Nanostructures Incorporating a Cytotoxic Peptide.<br>Cancer Research, 2010, 70, 3020-3026.                                                           | 0.9  | 182       |
| 35 | Regulation of αB-crystallin gene expression by the transcription factor Ets1 in breast cancer. Breast<br>Cancer Research and Treatment, 2010, 119, 63-70.                                              | 2.5  | 26        |
| 36 | Induction of the small heat shock protein αB-crystallin by genotoxic stress is mediated by p53 and p73.<br>Breast Cancer Research and Treatment, 2010, 122, 159-168.                                   | 2.5  | 12        |

VINCENT L CRYNS

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | αB-crystallin is a novel predictor of resistance to neoadjuvant chemotherapy in breast cancer. Breast<br>Cancer Research and Treatment, 2008, 111, 411-417.                                                                                 | 2.5 | 60        |
| 38 | Aspirin Sensitizes Cancer Cells to TRAIL–Induced Apoptosis by Reducing Survivin Levels. Clinical<br>Cancer Research, 2008, 14, 3168-3176.                                                                                                   | 7.0 | 68        |
| 39 | αB-crystallin: A novel marker of invasive basal-like and metaplastic breast carcinomas. Annals of<br>Diagnostic Pathology, 2008, 12, 33-40.                                                                                                 | 1.3 | 61        |
| 40 | Deconstructing the molecular portrait of basal-like breast cancer. Trends in Molecular Medicine, 2006, 12, 537-544.                                                                                                                         | 6.7 | 132       |
| 41 | The Small Heat Shock Protein αB-crystallin Is a Novel Inhibitor of TRAIL-induced Apoptosis That Suppresses the Activation of Caspase-3. Journal of Biological Chemistry, 2005, 280, 11059-11066.                                            | 3.4 | 196       |
| 42 | Peroxisome Proliferator-activated Receptor Î <sup>3</sup> Agonists Promote TRAIL-induced Apoptosis by Reducing<br>Survivin Levels via Cyclin D3 Repression and Cell Cycle Arrest. Journal of Biological Chemistry, 2005,<br>280, 6742-6751. | 3.4 | 98        |
| 43 | ÂB-Crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. Journal of Clinical Investigation, 2005, 116, 261-270.                                                                                           | 8.2 | 256       |
| 44 | The Small Heat Shock Protein αB-crystallin Negatively Regulates Apoptosis during Myogenic<br>Differentiation by Inhibiting Caspase-3 Activation. Journal of Biological Chemistry, 2002, 277,<br>38731-38736.                                | 3.4 | 237       |
| 45 | The Small Heat Shock Protein αB-Crystallin Negatively Regulates Cytochrome c- and<br>Caspase-8-dependent Activation of Caspase-3 by Inhibiting Its Autoproteolytic Maturation. Journal of<br>Biological Chemistry, 2001, 276, 16059-16063.  | 3.4 | 324       |