Júlia Seixas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350587/publications.pdf

Version: 2024-02-01

218592 265120 1,991 70 26 42 h-index citations g-index papers 73 73 73 3038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 2021, 16, 065012.	2.2	114
2	Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochemical Cycles, 2008, 22, .	1.9	113
3	Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling. Technological Forecasting and Social Change, 2015, 91, 161-178.	6.2	107
4	Unraveling electricity consumption profiles in households through clusters: Combining smart meters and door-to-door surveys. Energy and Buildings, 2016, 116, 666-676.	3.1	106
5	Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrological Processes, 2008, 22, 3115-3134.	1.1	98
6	Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 2010, 16, 2813-2829.	4.2	77
7	Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. Catena, 2013, 102, 27-39.	2.2	68
8	Projections of energy services demand for residential buildings: Insights from a bottom-up methodology. Energy, 2012, 47, 430-442.	4.5	67
9	Mining households' energy data to disclose fuel poverty: Lessons for Southern Europe. Journal of Cleaner Production, 2018, 178, 534-550.	4.6	67
10	Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy, 2019, 81, 725-735.	2.5	59
11	Cost of energy and environmental policy in Portuguese CO2 abatementâ€"scenario analysis to 2020. Energy Policy, 2008, 36, 3598-3611.	4.2	56
12	Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling. Energy Policy, 2015, 80, 165-176.	4.2	53
13	Integrated technological-economic modeling platform for energy and climate policy analysis. Energy, 2014, 73, 716-730.	4.5	51
14	Effects of renewables penetration on the security of Portuguese electricity supply. Applied Energy, 2014, 123, 438-447.	5.1	48
15	Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling. Energy, 2017, 141, 108-122.	4.5	47
16	Mapping Fuel Poverty in Portugal. Energy Procedia, 2016, 106, 155-165.	1.8	45
17	Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: assessing impacts from changes in storm rainfall, soil moisture and vegetation cover. Hydrological Processes, 2009, 23, 1212-1220.	1.1	44
18	Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Applied Energy, 2019, 237, 292-303.	5.1	43

#	Article	IF	Citations
19	Comparative analysis of MODIS-FAPAR and MERIS–MGVI datasets: Potential impacts on ecosystem modeling. Remote Sensing of Environment, 2009, 113, 2547-2559.	4.6	38
20	The dawn of urban energy planning – Synergies between energy and urban planning for São Paulo (Brazil) megacity. Journal of Cleaner Production, 2019, 215, 458-479.	4.6	36
21	Evaluating the MEFIDIS model for runoff and soil erosion prediction during rainfall events. Catena, 2005, 61, 210-228.	2.2	35
22	Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal. Journal of Vector Ecology, 2011, 36, 279-291.	0.5	35
23	Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part I: model parameterization and evaluation. Hydrological Processes, 2009, 23, 1202-1211.	1.1	33
24	Top-down and bottom-up modelling to support low-carbon scenarios: climate policy implications. Climate Policy, 2013, 13, 285-304.	2.6	32
25	Assessing heterogeneity from remote sensing images: The case of desertification in southern Portugal. International Journal of Remote Sensing, 2000, 21, 2645-2663.	1.3	31
26	Positive Energy District: A Model for Historic Districts to Address Energy Poverty. Frontiers in Sustainable Cities, 2021, 3, .	1.2	31
27	Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula. Biogeosciences, 2010, 7, 3707-3729.	1.3	27
28	Energy savings potential in urban rehabilitation: A spatial-based methodology applied to historic centres. Energy and Buildings, 2017, 152, 11-23.	3.1	26
29	InSmart – A methodology for combining modelling with stakeholder input towards EU cities decarbonisation. Journal of Cleaner Production, 2019, 231, 428-445.	4.6	26
30	INSMART – Insights on integrated modelling of EU cities energy system transition. Energy Strategy Reviews, 2018, 20, 150-155.	3.3	25
31	City energy modelling - Optimising local low carbon transitions with household budget constraints. Energy Strategy Reviews, 2019, 26, 100387.	3.3	24
32	Smart City Energy Planning. , 2016, , .		20
33	Satellite-derived estimation of environmental suitability for malaria vector development in Portugal. Remote Sensing of Environment, 2014, 145, 116-130.	4.6	19
34	Modelling the natural gas dynamics in the Southern Cone of Latin America. Applied Energy, 2017, 201, 219-239.	5.1	19
35	Carbon Neutrality Pathways Effects on Air Pollutant Emissions: The Portuguese Case. Atmosphere, 2021, 12, 324.	1.0	19
36	Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: Identifying key spatial indicators. Journal of Environmental Management, 2014, 133, 18-26.	3.8	17

#	Article	IF	Citations
37	Interplay between ethanol and electric vehicles as low carbon mobility options for passengers in the municipality of São Paulo. International Journal of Sustainable Transportation, 2017, 11, 518-525.	2.1	17
38	Diffusion of electric vehicles in Brazil from the stakeholders' perspective. International Journal of Sustainable Transportation, 2021, 15, 865-878.	2.1	17
39	Exposure of the EU-28 food imports to extreme weather disasters in exporting countries. Food Security, 2019, 11, 1373-1393.	2.4	16
40	Assessing effects of exogenous assumptions in GHG emissions forecasts – a 2020 scenario study for Portugal using the Times energy technology model. Technological Forecasting and Social Change, 2015, 94, 221-235.	6.2	14
41	What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?. Renewable Energy, 2019, 138, 416-433.	4.3	14
42	A new method for qualitative simulation of water resources systems: 1. Theory. Water Resources Research, 1987, 23, 2015-2018.	1.7	12
43	CCS Infrastructure Development Scenarios for the Integrated Iberian Peninsula and Morocco Energy System. Energy Procedia, 2013, 37, 2645-2656.	1.8	12
44	Spatial Planning of Electric Vehicle Infrastructure for Belo Horizonte, Brazil. Journal of Advanced Transportation, 2018, 2018, 1-16.	0.9	12
45	Prospective scenarios for the adoption of CCS technologies in the Iberian Peninsula. Sustainable Energy Technologies and Assessments, 2013, 2, 31-41.	1.7	9
46	Contribution of Electric Cars to the Mitigation of CO2 Emissions in the City of Sao Paulo. , 2014, , .		9
47	The savings of energy saving: interactions between energy supply and demand-side options—quantification for Portugal. Energy Efficiency, 2014, 7, 179-201.	1.3	9
48	Region Specific Challenges of a CO2 Pipeline Infrastructure in the West Mediterranean Area Model Results Versus Stakeholder Views. Energy Procedia, 2013, 37, 3137-3146.	1.8	8
49	A new method for qualitative simulation of water resources systems: 2. Applications. Water Resources Research, 1987, 23, 2019-2022.	1.7	7
50	Multidimensional simulation applied to water resources management. Water Resources Research, 1990, 26, 1877-1886.	1.7	7
51	Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 641-660.	1.3	7
52	A Tangled Web: Assessing overlaps between energy and environmental policy instruments along the electricity supply chain. Environmental Policy and Governance, 2015, 25, 439-458.	2.1	7
53	When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity. Renewable Energy, 2020, 162, 1684-1702.	4.3	7
54	Renewable energy sources availability under climate change scenarios $\$\#x2014$; Impacts on the Portuguese energy system. , 2008, , .		6

#	Article	IF	CITATIONS
55	CO2 emissions and mitigation policies for urban road transportation: Sao Paulo versus Shanghai. Urbe, 2018, 10, 143-158.	0.3	6
56	Energy Policies Influenced by Energy Systems Modellingâ€"Case Studies in UK, Ireland, Portugal and G8. Lecture Notes in Energy, 2015, , 15-41.	0.2	6
57	A Global Renewable Energy Roadmap: Comparing Energy Systems Models with IRENA's REmap 2030 Project. Lecture Notes in Energy, 2015, , 43-67.	0.2	6
58	Long term energy scenarios under uncertainty. , 2008, , .		5
59	Suitable Locations for Electric Vehicles Charging Infrastructure in Rio De Janeiro, Brazil., 2017,,.		5
60	Solar energy policy to boost Brazilian power sector. International Journal of Climate Change Strategies and Management, 2020, 12, 349-367.	1.5	5
61	Mainstreaming climate adaptation in spatial planning. The case of Baixa Pombalina in Lisbon. Finisterra, 2018, 53, 15-38.	0.3	3
62	How renewable energy promotion impacts the Portuguese economy?., 2015,,.		2
63	Looking deeper into residential electricity consumption profiles: The case of Évora. , 2015, , .		2
64	Assessing critical metal needs for a low carbon energy system in 2050., 2015, , .		1
65	Energy Sustainability—Rebounds Revisited Using Axiomatic Design. Sustainability, 2022, 14, 6737.	1.6	1
66	MODIS land cover product validation in the Iberian Peninsula. , 0, , .		0
67	Portugal as an electricity exporter country: environmental and economic implications. , 2016, , .		0
68	The smart city of Évora. , 2019, , 21-50.		0
69	The Medium to Long-Term Role of Renewable Energy Sources in Climate Change Mitigation in Portugal. , 2011, , .		0
70	Geneticland: Modelling Land-Use Change Using Evolutionary Algorithms. , 0, , 181-196.		О