Siu F Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350255/publications.pdf

Version: 2024-02-01

273 papers 10,535 citations

54 h-index 92 g-index

276 all docs

276 docs citations

276 times ranked 12357 citing authors

#	Article	IF	CITATIONS
1	Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94, 354-358.	1.1	385
2	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	1.6	380
3	Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film. Journal of Physical Chemistry B, 2005, 109, 7746-7748.	1.2	328
4	Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nature Communications, 2013, 4, 2220.	5.8	328
5	Upconverting Nearâ€Infrared Light through Energy Management in Core–Shell–Shell Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 13419-13423.	7.2	315
6	Hierarchical Assembly of ZnO Nanostructures on SnO ₂ Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano, 2009, 3, 3069-3076.	7.3	260
7	Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nature Communications, 2016, 7, 10304.	5.8	255
8	Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. Journal of Applied Physics, 2003, 94, 1597-1604.	1.1	211
9	Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Applied Physics Letters, 2004, 84, 3241-3243.	1.5	210
10	2D Layered Materials of Rareâ€Earth Erâ€Doped MoS ₂ with NIRâ€ŧoâ€NIR Down―and Upâ€Conver Photoluminescence. Advanced Materials, 2016, 28, 7472-7477.	rsion 11.1	180
11	Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE Journal of Quantum Electronics, 1994, 30, 1389-1395.	1.0	164
12	An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. Journal of Materials Chemistry, 2012, 22, 22378.	6.7	162
13	Integrated Terahertz Graphene Modulator with 100% Modulation Depth. ACS Photonics, 2015, 2, 1559-1566.	3.2	158
14	Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid coreâ€"shellâ€"satellite nanostructures. Light: Science and Applications, 2017, 6, e16217-e16217.	7.7	155
15	Observation of Lasing Emission from Carbon Nanodots in Organic Solvents. Advanced Materials, 2012, 24, 2263-2267.	11.1	146
16	Zinc oxide thin-film random lasers on silicon substrate. Applied Physics Letters, 2004, 84, 3244-3246.	1.5	133
17	Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 2003, 259, 335-342.	0.7	129
18	Origin of room temperature ferromagnetism in ZnO:Cu films. Journal of Applied Physics, 2006, 99, 086101.	1.1	121

#	Article	IF	Citations
19	Amplified Spontaneous Emission and Lasing from Lanthanide-Doped Up-Conversion Nanocrystals. ACS Nano, 2013, 7, 11420-11426.	7.3	116
20	Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles. Optics Express, 2015, 23, 2021.	1.7	111
21	A new theoretical basis of higher-derivative optical differentiators. Optics Communications, 2004, 230, 115-129.	1.0	109
22	UV Random Lasing Action in p-SiC(4H)/i-ZnO–SiO2 Nanocomposite/n-ZnO:Al Heterojunction Diodes. Advanced Materials, 2006, 18, 1685-1688.	11.1	108
23	Enhancing Multiphoton Upconversion from NaYF ₄ :Yb/Tm@NaYF ₄ Core–Shell Nanoparticles <i>via</i> the Use of Laser Cavity. ACS Nano, 2017, 11, 843-849.	7.3	106
24	Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO ₂ Nanotube Arrays for Highly Efficient and Recyclable Photocatalysts. Small, 2009, 5, 2260-2264.	5.2	105
25	Phononâ€Assisted Population Inversion in Lanthanideâ€Doped Upconversion Ba ₂ LaF ₇ Nanocrystals in Glassâ€Ceramics. Advanced Materials, 2016, 28, 8045-8050.	11.1	104
26	Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Applied Physics Letters, 2007, 90, 032509.	1.5	102
27	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	2.8	98
28	Fabrication of n-ZnO:Alâ^•p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique. Applied Physics Letters, 2005, 86, 241111.	1.5	97
29	Bistable switching using an optical Tamm cavity with a Kerr medium. Optics Communications, 2010, 283, 2622-2626.	1.0	94
30	MnO2/onion-like carbon nanocomposites for pseudocapacitors. Journal of Materials Chemistry, 2012, 22, 17584.	6.7	91
31	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	5.4	91
32	Directional edge-emitting UV random laser diodes. Applied Physics Letters, 2006, 89, 221109.	1.5	89
33	Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Applied Physics Letters, 2007, 90, 231106.	1.5	88
34	Room-Temperature Ultraviolet Lasing from Zinc Oxide Microtubes. Japanese Journal of Applied Physics, 2003, 42, L1229-L1231.	0.8	86
35	Direct Identification of Surface Defects and Their Influence on the Optical Characteristics of Upconversion Nanoparticles. ACS Nano, 2018, 12, 3623-3628.	7.3	86
36	Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Applied Physics Letters, 2010, 96, .	1.5	85

#	Article	IF	Citations
37	Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates. Applied Physics Letters, 2005, 87, 013104.	1.5	77
38	Zn-interstitial-enhanced ferromagnetism in Cu-doped ZnO films. Journal of Magnetism and Magnetic Materials, 2007, 315, 107-110.	1.0	77
39	Magnetotransport properties of p-type carbon-doped ZnO thin films. Applied Physics Letters, 2009, 95, .	1.5	76
40	Evolution of visible luminescence in ZnO by thermal oxidation of zinc films. Chemical Physics Letters, 2003, 375, 113-118.	1.2	75
41	Band parameters and electronic structures of wurtzite ZnO and ZnOâ^•MgZnO quantum wells. Journal of Applied Physics, 2006, 99, 013702.	1.1	74
42	Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. Applied Physics Letters, 2007, 90, 013107.	1.5	74
43	White-Light Whispering-Gallery-Mode Lasing from Lanthanide-Doped Upconversion NaYF ₄ Hexagonal Microrods. ACS Photonics, 2017, 4, 1539-1543.	3.2	71
44	ZnO random laser diode arrays for stable single-mode operation at high power. Applied Physics Letters, 2010, 97, .	1.5	70
45	Allâ€Inorganic Perovskite Polymer–Ceramics for Flexible and Refreshable Xâ€Ray Imaging. Advanced Functional Materials, 2022, 32, 2107424.	7.8	69
46	Dynamic behavior of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 1996, 32, 1168-1179.	1.0	67
47	Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. Nanoscale, 2019, 11, 11577-11583.	2.8	66
48	Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers. Applied Physics Letters, 2005, 86, 011118.	1.5	65
49	Engineering the intermediate band states in amorphous Ti ³⁺ -doped TiO ₂ for hybrid dye-sensitized solar cell applications. Journal of Materials Chemistry A, 2015, 3, 11437-11443.	5.2	65
50	Near-field focusing properties of zone plates in visible regime - New insights. Optics Express, 2008, 16, 9554.	1.7	64
51	Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 1996, 32, 2139-2147.	1.0	63
52	AlN nanowires: synthesis, physical properties, and nanoelectronics applications. Journal of Materials Science, 2012, 47, 5341-5360.	1.7	57
53	Surface plasmon enhanced electrically pumped random lasers. Nanoscale, 2013, 5, 513-517.	2.8	57
54	Tuning nonlinear optical absorption properties of WS ₂ nanosheets. Nanoscale, 2015, 7, 17771-17777.	2.8	57

#	Article	IF	CITATIONS
55	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	5.8	57
56	Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate. Applied Physics Letters, 2003, 83, 4288-4290.	1.5	56
57	Nonlinear dynamics of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 1999, 35, 332-341.	1.0	55
58	Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers. Nanoscale, 2013, 5, 1797.	2.8	52
59	Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology, 2005, 16, 1300-1303.	1.3	51
60	Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response. Journal of Physical Chemistry C, 2013, 117, 23108-23116.	1.5	51
61	Energy Migration Upconversion in Ce(III)â€Doped Heterogeneous Coreâ^'Shellâ^'Shell Nanoparticles. Small, 2017, 13, 1701479.	5.2	51
62	Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. Applied Physics Letters, 2009, 94, .	1.5	49
63	Wide-bandwidth lasing from C-dot/epoxy nanocomposite Fabry–Perot cavities with ultralow threshold. Journal of Materials Chemistry C, 2014, 2, 1525.	2.7	49
64	Large-area color controllable remote carbon white-light light-emitting diodes. Carbon, 2015, 85, 344-350.	5.4	49
65	Amplified Spontaneous Emission from Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. Advanced Optical Materials, 2016, 4, 1053-1059.	3.6	47
66	Flexible Ultraviolet Random Lasers Based on Nanoparticles. Small, 2005, 1, 956-959.	5.2	46
67	Numerical Study of Gain-Assisted Terahertz Hybrid Plasmonic Waveguide. Plasmonics, 2012, 7, 571-577.	1.8	46
68	Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer. Applied Physics Letters, 2005, 86, 031112.	1.5	45
69	High-temperature random lasing in ZnO nanoneedles. Applied Physics Letters, 2006, 89, 011103.	1.5	42
70	Simultaneous formation of visible and ultraviolet random lasings in ZnO films. Applied Physics Letters, 2006, 89, 021110.	1.5	42
71	Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states. Applied Physics Letters, 2009, 95, .	1.5	42
72	Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nature Communications, 2022, 13, 138.	5.8	42

#	Article	IF	CITATIONS
73	Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods. Applied Physics Letters, 2007, 90, 193118.	1.5	41
74	Ultraviolet Electroluminescence from Randomly Assembled $\langle i \rangle n \langle i \rangle$ -SnO $\langle sub \rangle 2 \langle sub \rangle$ Nanowires $\langle i \rangle p \langle i \rangle$ -GaN:Mg Heterojunction. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1191-1194.	4.0	41
75	High-Temperature Lasing Characteristics of ZnO Epilayers. Advanced Materials, 2006, 18, 771-774.	11.1	40
76	Blueâ€Pumped Deep Ultraviolet Lasing from Lanthanideâ€Doped Lu ₆ O ₅ F ₈ Upconversion Nanocrystals. Advanced Optical Materials, 2020, 8, 1900968.	3.6	40
77	Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nature Photonics, 2022, 16, 485-490.	15.6	40
78	Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation. Chemical Physics Letters, 2003, 377, 329-332.	1.2	39
79	Strain dependence of lasing mechanisms in ZnO epilayers. Applied Physics Letters, 2005, 86, 261111.	1.5	39
80	Ferromagnetic Cu-doped AlN nanorods. Nanotechnology, 2007, 18, 105601.	1.3	39
81	Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique. Journal of Crystal Growth, 2006, 287, 204-212.	0.7	37
82	Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers. Journal of Lightwave Technology, 1997, 15, 1032-1041.	2.7	36
83	Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well. Journal of Crystal Growth, 2006, 287, 28-33.	0.7	32
84	Extremely High Sensitive Plasmonic Refractive Index Sensors Based on Metallic Grating. Plasmonics, 2010, 5, 389-394.	1.8	32
85	Investigation of Multilayer Subwavelength Metallic-Dielectric Stratified Structures. IEEE Journal of Quantum Electronics, 2012, 48, 1554-1559.	1.0	32
86	Design of low-threshold compact Au-nanoparticle lasers. Optics Letters, 2010, 35, 2535.	1.7	30
87	Self-Doped Rutile Titania with High Performance for Direct and Ultrafast Assay of H ₂ O ₂ . ACS Applied Materials & Interfaces, 2013, 5, 12784-12788.	4.0	30
88	Room-temperature growth of carbon nanofibers on plastic substrates. Surface Science, 2006, 600, 3663-3667.	0.8	29
89	Exciton radiative lifetime in ZnO quantum dots embedded in SiOx matrix. Applied Physics Letters, 2006, 88, 221903.	1.5	29
90	Lasing in electrodeposited ZnO inverse opal. Applied Physics Letters, 2007, 91, 161116.	1.5	29

#	Article	IF	CITATIONS
91	Randomly packed n-SnO2 nanorods/p-SiC heterojunction light-emitting diodes. Applied Physics Letters, 2009, 95, 201104.	1.5	29
92	Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers. Applied Physics Letters, 2013, 102, 031119.	1.5	29
93	Experimental and Theoretical Analysis of Argon Plasma-Enhanced Quantum-Well Intermixing. IEEE Journal of Quantum Electronics, 2004, 40, 166-174.	1.0	28
94	Ferromagnetic Cu doped ZnO as an electron injector in heterojunction light emitting diodes. Journal of Applied Physics, 2008, 104 , .	1.1	28
95	Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film. Optics Express, 2010, 18, 20439.	1.7	28
96	Electrically pumped random lasers. Journal Physics D: Applied Physics, 2015, 48, 483001.	1.3	28
97	Broadband Ce(III)-Sensitized Quantum Cutting in Core–Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application. Journal of Physical Chemistry Letters, 2017, 8, 5099-5104.	2.1	28
98	Atomicâ€Level Passivation of Individual Upconversion Nanocrystal for Single Particle Microscopic Imaging. Advanced Functional Materials, 2020, 30, 1906137.	7.8	28
99	Reality or fantasyâ€"Perovskite semiconductor laser diodes. EcoMat, 2021, 3, e12077.	6.8	28
100	Performance of optical chaotic communication systems using multimode vertical cavity surface emitting lasers. Optics Communications, 2001, 200, 143-152.	1.0	27
101	Ultraviolet electroluminescence from two-dimensional ZnO nanomesh/GaN heterojunction light emitting diodes. Applied Physics Letters, 2011, 98, 263101.	1.5	27
102	Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique. Journal of Applied Physics, 2007, 101, 094905.	1.1	25
103	Visible red random lasing in Y2O3:Eu3+/ZnO polycrystalline thin films by energy transfer from ZnO films to Eu3+. Applied Physics Letters, 2008, 93, 151105.	1.5	25
104	Random lasing action of randomly assembled ZnO Nanowires with MgO coating. Optics Express, 2010, 18, 13647.	1.7	25
105	Photoluminescence enhancement in few-layer WS2 films via Au nanoparticles. AIP Advances, 2015, 5, .	0.6	25
106	Local measurement of secondary electron emission from ZnO-coated carbon nanotubes. Nanotechnology, 2006, 17, 1564-1567.	1.3	24
107	Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions. Optics Express, 2010, 18, 21926.	1.7	24
108	Influence of charge trapping on electroluminescence from Si-nanocrystal light emitting structure. Journal of Applied Physics, 2007, 101, 104306.	1.1	23

#	Article	IF	Citations
109	Magnetic and Thermal Expansion Properties of Vertically Aligned Fe Nanotubes Fabricated by Electrochemical Method. Journal of Physical Chemistry C, 2008, 112, 4168-4171.	1.5	23
110	Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation. Optical Materials Express, 2012, 2, 490.	1.6	23
111	Low-threshold lasing action in an asymmetric double ZnO/ZnMgO quantum well structure. Applied Physics Letters, 2013, 103, 131104.	1.5	23
112	Quasi mode-locking of coherent feedback random fiber laser. Scientific Reports, 2016, 6, 39703.	1.6	23
113	Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method. IEEE Photonics Technology Letters, 2003, 15, 1231-1233.	1.3	22
114	Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles. Applied Physics Letters, 2006, 89, 081107.	1.5	22
115	Lasing Characteristics of CH ₃ NH ₃ PbCl ₃ Single rystal Microcavities under Multiphoton Excitation. Advanced Optical Materials, 2018, 6, 1700992.	3.6	22
116	Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. Journal of Materials Chemistry A, 2018, 6, 18687-18693.	5.2	22
117	Robust and Flexible Random Lasers Using Perovskite Quantum Dots Coated Nickel Foam for Speckleâ€Free Laser Imaging. Small, 2021, 17, e2103065.	5.2	22
118	Sol–Gel ZnO–SiO <tex>\$_2\$</tex> Composite Waveguide Ultraviolet Lasers. IEEE Photonics Technology Letters, 2004, 16, 2418-2420.	1.3	21
119	Crystallite size-modulated exciton emission in SnO2 nanocrystalline films grown by sputtering. Journal of Applied Physics, 2013, 113, .	1.1	21
120	Polarization selection in birefringent antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2003, 39, 1362-1371.	1.0	20
121	High-power single-mode ZnO thin-film random lasers. IEEE Journal of Quantum Electronics, 2004, 40, 1186-1194.	1.0	20
122	Random Lasing Action from Randomly Assembled ZnS Nanosheets. Nanoscale Research Letters, 2010, 5, 809-812.	3.1	20
123	Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers. Optics Express, 2013, 21, 31872.	1.7	20
124	Random lasing in Eu ³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation. Nanoscale, 2015, 7, 16246-16250.	2.8	20
125	Lasing characteristics of single-crystalline CsPbCl ₃ perovskite microcavities under multiphoton excitation. Journal Physics D: Applied Physics, 2017, 50, 225101.	1.3	20
126	Atomic-Scale Insights into the Dynamics of Growth and Degradation of All-Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 4618-4624.	2.1	20

#	Article	IF	Citations
127	Analysis and design of vertical-cavity surface-emitting lasers for self-sustained pulsation operation. IEEE Journal of Quantum Electronics, 1998, 34, 497-505.	1.0	19
128	Frequency upconverted amplified spontaneous emission and lasing from inorganic perovskite under simultaneous six-photon absorption. Optics Letters, 2018, 43, 2066.	1.7	19
129	A quasi-three-dimensional large-signal dynamic model of distributed feedback lasers. IEEE Journal of Quantum Electronics, 1996, 32, 424-432.	1.0	18
130	Comprehensive modeling of diffused quantum-well vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 715-722.	1.9	18
131	ZnO thin films produced by filtered cathodic vacuum arc technique. Ceramics International, 2004, 30, 1669-1674.	2.3	18
132	Ultracompact 2\$,imes,\$2 Photonic Crystal Waveguide Power Splitter Based on Self-Imaging Effect Realized by Asymmetric Interference. IEEE Photonics Technology Letters, 2011, 23, 1151-1153.	1.3	18
133	Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination. Applied Physics B: Lasers and Optics, 2011, 102, 95-100.	1.1	18
134	Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of dipole transition silence semiconductors. Nanoscale, 2013, 5, 11561.	2.8	18
135	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF ₄ Hexagonal Microrods. Inorganic Chemistry, 2018, 57, 8200-8204.	1.9	18
136	Measurement of deformation of the concrete sleepers under different support conditions using non-contact laser speckle imaging sensor. Engineering Structures, 2020, 205, 110054.	2.6	18
137	Semiconductor lasers using diffused quantum-well structures. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 723-735.	1.9	17
138	Edge-Emitting Vertically Aligned ZnO Nanorods Random Laser on Plastic Substrate. IEEE Photonics Technology Letters, 2007, 19, 1792-1794.	1.3	16
139	High temperature excitonic lasing characteristics of randomly assembled SnO2 nanowires. Applied Physics Letters, 2009, 95, .	1.5	16
140	Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3 distributed Bragg reflector – Ag interface. Optics Communications, 2011, 284, 1890-1892.	1.0	16
141	Realization of multiphoton lasing from carbon nanodot microcavities. Nanoscale, 2017, 9, 5957-5963.	2.8	16
142	Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation. IEEE Journal of Quantum Electronics, 1997, 33, 71-80.	1.0	15
143	Field emission from copper phthalocyanine and copper hexadecafluorophthalocyanine nanowires. Materials Letters, 2007, 61, 3842-3846.	1.3	15
144	Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides. Optics Express, 2008, 16, 16113.	1.7	15

#	Article	IF	Citations
145	Vectorial polariton solitons in semiconductor microcavities. Optics Express, 2010, 18, 21219.	1.7	15
146	Design and analysis of cylindrical antiresonant reflecting optical waveguide. Journal of Lightwave Technology, 2003, 21, 3379-3386.	2.7	14
147	Exciton related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique. Applied Physics Letters, 2006, 88, 191112.	1.5	14
148	The formation characteristics of closed-loop random cavities inside highly disordered ZnO polycrystalline thin films. Applied Physics Letters, 2006, 88, 121126.	1.5	14
149	Static and Dynamic Modeling of Circular Grating-Coupled Distributed Feedback Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 770-776.	1.0	14
150	High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide. Journal of Applied Physics, 2009, 106, .	1.1	14
151	Optical Flip-Flop Using Bistable Vertical-Cavity Semiconductor Optical Amplifiers With Anti-Resonant Reflecting Optical Waveguide. Journal of Lightwave Technology, 2009, 27, 4703-4710.	2.7	14
152	Improved performance of ZnO light-emitting devices by introducing a hole-injection layer. Optics Express, 2014, 22, 17524.	1.7	14
153	Ultraviolet Lasers Realized via Electrostatic Doping Method. Scientific Reports, 2015, 5, 13641.	1.6	14
154	Sevenâ€Photonâ€Excited Upconversion Lasing at Room Temperature. Advanced Optical Materials, 2018, 6, 1800518.	3.6	14
155	Electrochemically assisted flexible lanthanide upconversion luminescence sensing of heavy metal contamination with high sensitivity and selectivity. Nanoscale Advances, 2019, 1, 265-272.	2.2	14
156	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	1.9	14
157	Influence of transverse modes on the dynamic response of vertical cavity surface emitting lasers. IEE Proceedings: Optoelectronics, 1996, 143, 189-194.	0.8	13
158	Transverse-Leaky-Mode Characteristics of ARROW VCSELs. Journal of Lightwave Technology, 2004, 22, 1797-1804.	2.7	13
159	Formation conditions of random laser cavities in annealed ZnO epilayers. IEEE Journal of Quantum Electronics, 2005, 41, 970-973.	1.0	13
160	Enhanced Secondary Electron Emission from Group III Nitride/ZnO Coaxial Nanorod Heterostructures. Small, 2006, 2, 736-740.	5.2	13
161	Random laser action in dielectric-metal-dielectric surface plasmon waveguides. Applied Physics Letters, 2009, 95, 231114.	1.5	13
162	High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins. Journal of Applied Physics, 2009, 106, 123105.	1.1	13

#	Article	IF	Citations
163	Ultraviolet Laser Action in Ferromagnetic Zn1 \hat{a} 'x Fe x O Nanoneedles. Nanoscale Research Letters, 2010, 5, 247-51.	3.1	13
164	Ultraviolet Random Lasing Action from Highly Disordered n-AlN/p-GaN Heterojunction. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1726-1730.	4.0	13
165	Analysis of dielectric loaded surface plasmon waveguide structures: Transfer matrix method for plasmonic devices. Journal of Applied Physics, 2012, 111, 073108.	1.1	13
166	Proposed enhancement of side-mode suppression ratio in /spl lambda//4 shifted distributed feedback lasers with nonuniform diffused quantum wells. IEEE Photonics Technology Letters, 1996, 8, 482-484.	1.3	12
167	Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator. IEEE Journal of Quantum Electronics, 2002, 38, 1062-1074.	1.0	12
168	Polarization characteristics of ZnO rib waveguide random lasers. Applied Physics Letters, 2006, 88, 091116.	1.5	12
169	Low-temperature fabrication and random laser action of doped zinc oxide nanoneedles. Surface Science, 2007, 601, 4459-4464.	0.8	12
170	Wide bandwidth lasing randomly assembled ZnS/ZnO biaxial nanobelt heterostructures. Applied Physics Letters, 2010, 96, 141115.	1.5	12
171	Edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide. Optics Express, 2010, 18, 3687.	1.7	12
172	Large-signal dynamic behavior of distributed-feedback lasers including lateral effects. IEEE Journal of Quantum Electronics, 1994, 30, 1740-1750.	1.0	11
173	Ultraviolet Lasing Phenomenon of Zinc Oxide Hexagonal Microtubes. Japanese Journal of Applied Physics, 2004, 43, 5273-5278.	0.8	11
174	Theoretical Investigation of Excitonic Gain in <tex>\$hbox ZnO-Mg_xhbox Zn_1-xhbox O\$</tex> Strained Quantum Wells. IEEE Journal of Quantum Electronics, 2006, 42, 455-463.	1.0	11
175	Influence of Surface Roughness on the Lasing Performance of Highly Disordered ZnO Films. IEEE Photonics Technology Letters, 2006, 18, 2380-2382.	1.3	11
176	Ferromagnetic copper-doped ZnO deposited on plastic substrates. Journal of Physics Condensed Matter, 2007, 19, 236214.	0.7	11
177	Wide tunable ultraviolet random lasing action from ZnMgo thin films. Journal of Crystal Growth, 2009, 312, 16-18.	0.7	11
178	Design and analysis of two-dimensional high-index-contrast grating surface-emitting lasers. Optics Express, 2009, 17, 260.	1.7	11
179	A surface-emitting distributed-feedback plasmonic laser. Applied Physics Letters, 2009, 95, 141114.	1.5	11
180	Electroluminescence from AlN nanowires grown on p-SiC substrate. Applied Physics Letters, 2010, 97, .	1.5	11

#	Article	IF	CITATIONS
181	Electroluminescence from n-ln_2O_3:Sn randomly assembled nanorods/p-SiC heterojunction. Optics Express, 2010, 18, 15585.	1.7	11
182	Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers. Scientific Reports, 2014, 4, 7083.	1.6	11
183	High-power single-mode operation in DFB and FP lasers using diffused quantum-well structure. IEEE Journal of Quantum Electronics, 1997, 33, 999-1009.	1.0	10
184	An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 1998, 34, 1938-1948.	1.0	10
185	Enhanced photosensitivity in sol–gel derived 20GeO2:80SiO2 thin films. Applied Physics A: Materials Science and Processing, 2006, 82, 535-541.	1.1	10
186	Photon-induced conduction modulation in SiO2 thin films embedded with Ge nanocrystals. Applied Physics Letters, 2007, 90, 103102.	1.5	10
187	Long-wavelength optical transmission of extremely narrow slits via hybrid surface-plasmon and Fabry–Pérot modes. Journal of Applied Physics, 2010, 108, 013302.	1.1	10
188	Tunable Surface Plasmon Resonance of Gold Nanoparticles Self-Assembled on Fused Silica Substrate. Electrochemical and Solid-State Letters, 2010, 13, K96.	2.2	10
189	Metal-oxide-SiO/sub 2/ composite ZnO lasers. IEEE Photonics Technology Letters, 2005, 17, 1815-1817.	1.3	9
190	Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction. Nano Research, 2016, 9, 549-559.	5.8	9
191	Low-threshold GaN thin-film random laser through the weak scattering feedback. Journal Physics D: Applied Physics, 2017, 50, 045107.	1.3	9
192	<i>In Situ</i> Observation of Nucleation and Crystallization of a Single Nanoparticle in Transparent Media. Journal of Physical Chemistry C, 2020, 124, 15533-15540.	1.5	9
193	Ultraviolet C lasing at 263  nm from Ba ₂ LaF ₇ :Yb ³⁺ ,Tm ^{3+ upconversion nanocrystal microcavities. Optics Letters, 2020, 45, 5986.}	sup>	9
194	Aligned InN nanofingers prepared by the ion-beam assisted filtered cathodic vacuum arc technique. Nanotechnology, 2005, 16, 3069-3073.	1.3	8
195	Lasing threshold dependence on excitation pulse duration in ZnO tetrapods. Optical Materials, 2008, 31, 35-38.	1.7	8
196	Design and analysis of a surface plasmon polariton modulator using the electro-optic effect. Applied Optics, 2009, 48, 6600.	2.1	8
197	Multiphoton Upconversion Emission from Diamond Single Crystals. ACS Applied Materials & Diamond Single Crystals. Diamond Single Crysta	4.0	8
198	Study of Crystallization and Coalescence of Nanocrystals in Amorphous Glass at High Temperature. Inorganic Chemistry, 2019, 58, 9500-9504.	1.9	8

#	Article	IF	CITATIONS
199	Effect of external reflectors on radiation profile of grating coupled surface emitting lasers. IEE Proceedings, Part J: Optoelectronics, 1993, 140, 30.	0.4	8
200	Design and Fabrication of Zinc Oxide Thin-Film Ridge Waveguides on Silicon Substrate With Ultraviolet Amplified Spontaneous Emission. IEEE Journal of Quantum Electronics, 2004, 40, 406-412.	1.0	7
201	Modal characteristics of terahertz surface-emitting distributed-feedback lasers with a second-order concentric-circular metal grating. Journal of Applied Physics, 2009, 106, 053103.	1.1	7
202	Bistabilities of Birefringent Vertical-Cavity Semiconductor Optical Amplifiers With Antiresonant Reflecting Optical Waveguide. IEEE Journal of Quantum Electronics, 2010, 46, 11-18.	1.0	7
203	Low temperature synthesis of CsPbI 3 sub-micrometer wires with tailored emission band for flexible X-ray phosphors applications. Journal of Luminescence, 2017, 188, 454-459.	1.5	7
204	Effects of lateral modes on the static and dynamic behaviour of buried heterostructure DFB lasers. IEE Proceedings: Optoelectronics, 1995, 142, 97-102.	0.8	6
205	Influence of lateral field on the relaxation oscillation frequency of semiconductor lasers. IEEE Journal of Quantum Electronics, 1996, 32, 1-3.	1.0	6
206	Numerical analysis of nonlinear soliton propagation phenomena using the fuzzy mesh analysis technique. IEEE Journal of Quantum Electronics, 1998, 34, 2029-2035.	1.0	6
207	Second-harmonic distortion in vertical-cavity surface-emitting lasers with lateral loss effects. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 546-552.	1.9	6
208	Optical Properties of Gold Nanoparticles on Heavily-Doped Si Substrate Synthesized with an Electrochemical Process. Journal of the Electrochemical Society, 2011, 158, K152.	1.3	6
209	Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts. Optics Letters, 2013, 38, 1527.	1.7	6
210	Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes. NDT and E International, 2020, 111, 102219.	1.7	6
211	Improvement of Fourier series analysis technique by time-domain window function. IEEE Photonics Technology Letters, 1996, 8, 1364-1366.	1.3	5
212	Analysis of a DPSK soliton transmission system. Optics and Laser Technology, 1997, 29, 411-414.	2.2	5
213	Time-domain travelling-wave algorithms on the analysis of distributed feedback lasers. IEE Proceedings: Optoelectronics, 2003, 150, 266-272.	0.8	5
214	Suppression of Polarization Switching in Birefringent Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers. IEEE Photonics Technology Letters, 2004, 16, 711-713.	1.3	5
215	Fabrication of inorganic GeO2:SiO2 channel waveguides by ultraviolet imprinting technique. Applied Physics Letters, 2006, 89, 071105.	1.5	5
216	Diffraction Characteristics of Concentric Circular Metal Grating Operating at Terahertz Regime. IEEE Journal of Quantum Electronics, 2010, 46, 898-905.	1.0	5

#	Article	lF	Citations
217	An Index-Guided ZnO Random Laser Array. IEEE Photonics Technology Letters, 2011, 23, 522-524.	1.3	5
218	Enhanced laser speckle optical sensor for in situ strain sensing and structural health monitoring. Optics Letters, 2020, 45, 2331.	1.7	5
219	Deep UV random lasing from NaGdF ₄ :Yb ³⁺ ,Tm ³⁺ upconversion nanocrystals in amorphous borosilicate glass. Optics Letters, 2020, 45, 3095.	1.7	5
220	Transient Response of ARROW VCSELs Under External Optical Feedback. IEEE Photonics Technology Letters, 2004, 16, 1610-1612.	1.3	4
221	Transient response of ARROW VCSELs. IEEE Journal of Quantum Electronics, 2005, 41, 140-147.	1.0	4
222	Optical and ferromagnetic characteristics of Mn doped ZnO thin films grown by filtered cathodic vacuum arc technique. Thin Solid Films, 2010, 518, 7048-7052.	0.8	4
223	Proposed enhancement of single mode operation in VCSELs using diffused quantum well structure. , 1998, 30, 71-77.		3
224	Design and analysis of large-area vertical-cavity semiconductor optical amplifiers with anti-resonant reflecting optical waveguide. Journal of Lightwave Technology, 2006, 24, 526-535.	2.7	3
225	ZnO–ZnMgO Multiple Quantum-Well Ridge Waveguide Lasers. IEEE Photonics Technology Letters, 2009, 21, 1624-1626.	1.3	3
226	Excitation and Optimization Modeling of Surface Plasmon Polaritons in a Concentric Circular Metallic Grating Film. Plasmonics, 2010, 5, 69-74.	1.8	3
227	Ultraviolet Lasing Characteristics of ZnS Microbelt Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1501705-1501705.	1.9	3
228	Growth Processes of LuF3 Upconversion Nanoflakes with the Assistance of Amorphous Nanoclusters. ACS Applied Nano Materials, 2019, 2, 5254-5259.	2.4	3
229	Dynamic behavior of double-tapered-waveguide distributed feedback lasers. IEEE Journal of Quantum Electronics, 1997, 33, 1260-1267.	1.0	2
230	Theoretical Studies of Polarization Bistability in Birefringent ARROW VCSELs. IEEE Journal of Quantum Electronics, 2006, 42, 1107-1114.	1.0	2
231	Multiple-Mode Behavior of Circular-Grating-Coupled Distributed Feedback Lasers. Journal of Lightwave Technology, 2008, 26, 3345-3354.	2.7	2
232	Modeling of Rabi splitting in quantum well microcavities using time-dependent transfer matrix method. Optics Express, 2008, 16, 19285.	1.7	2
233	Suppression of Random Lasing Modes in Polycrystalline ZnO Thin-Film by Using Distributed Bragg Reflector. IEEE Photonics Technology Letters, 2009, 21, 549-551.	1.3	2
234	Influence of SiO2 Layer on the Dielectric Function of Gold Nanoparticles on Si Substrate. Electrochemical and Solid-State Letters, 2012, 15, K5.	2.2	2

#	Article	IF	Citations
235	Terahertz Graphene Modulator Integrated with Quantum Cascade Laser Achieving 100% Modulation Depth. , 2016 , , .		2
236	Vertical-cavity surface-emitting semiconductor lasers with diffused quantum wells., 0,,.		1
237	Title is missing!. Optical and Quantum Electronics, 1997, 29, 683-696.	1.5	1
238	Numerical study of large-area anti-resonant reflecting optical waveguide vertical-cavity semiconductor optical amplifiers. , 0 , , .		1
239	Analysis and Design of Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers for Above-Threshold Operation. Journal of Lightwave Technology, 2008, 26, 1935-1942.	2.7	1
240	Design of Stable Single-Mode Chaotic Light Source Using Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 338-345.	1.0	1
241	Design and analysis of terahertz surface-emitting distributed-feedback lasers with circular metal grating. , 2010, , .		1
242	Lasing characteristics of random cylindrical microcavity lasers. Applied Physics Letters, 2011, 99, 241111.	1.5	1
243	Stable Singleâ€Mode Lasing from a Hybrid Perovskite–Polymer Fiber. Advanced Optical Materials, 0, , 2200439.	3.6	1
244	Spatial active optical switching by using grating coupled surface emitting DFB lasers. Electronics Letters, 1993, 29, 1147.	0.5	0
245	Fabry Perot semiconductor lasers with periodic diffused quantum wells structure. , 0, , .		0
246	Dynamic response of buried heterostructure and stripe geometry $\hat{l}_{\nu}/4$ DFB semiconductor lasers. , 0, , .		0
247	Analysis of nonlinear pulse propagation in an optical fiber laser. , 0, , .		0
248	Enhancement of mode stability in vertical cavity surface emitting lasers with diffused quantum wells structure. , 0 , , .		0
249	Numerical simulation as a modeling and teaching tool of optical devices and systems., 1997, 3190, 271.		0
250	Effect of non-uniform distribution of electric field on diffused quantum well lasers., 1998,,.		0
251	Modeling of diffused quantum well vertical-cavity surface-emitting lasers. , 1998, , .		0
252	Bifurcation behaviour of vertical cavity surface emitting lasers. , 0, , .		0

#	Article	lF	CITATIONS
253	Modulation response of VCSEL with lateral loss effects. , 0, , .		O
254	Lateral loss effects on modulation bandwidth in VCSELs. , 1999, , .		0
255	<title>Analysis of nonlinear soliton propagation by the improved FMAT</title> ., 2000, , .		0
256	Split-step reconstruction technique for the analysis of soliton propagation. , 2000, 3944, 953.		0
257	Nonlinear soliton propagation by use of the split-step reconstruction technique. Applied Optics, 2000, 39, 3632.	2.1	0
258	Simple model for DFB laser integrated with Mach-Zehnder modulator. , 2002, 4905, 243.		0
259	Introduction to the issue on optoelectronic device simulation. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 685-687.	1.9	0
260	Modal characteristics of anti-resonant reflecting optical waveguide vertical cavity surface emitting lasers. , 0, , .		0
261	Investigation of the ultraviolet lasing characteristics of zinc hexagonal microtubes., 0,,.		0
262	Polarization mode beating and self-sustained pulsation in optically pumped birefringent vertical cavity surface emitting lasers. , 0 , , .		0
263	Free-Excitonic Gain in ZnO/MgxZn1-xO Strained Quantum Wells. , 2006, , .		0
264	Modeling of ZnO thin film random lasers. , 2006, , .		0
265	Tailoring of polarization bistable characteristics in birefringent ARROW VCSEL., 2006,,.		0
266	Fabrication and Optical Properties of ZnO Quantum Dots. Advanced Materials Research, 2008, 31, 71-73.	0.3	0
267	Temperature dependent exciton radiative lifetime in ZnO nanorods. International Journal of Nanotechnology, 2007, 4, 404.	0.1	0
268	Introduction to the OQE Special Issue on "Numerical Simulation of Optoelectronic Devices― Optical and Quantum Electronics, 2007, 38, 933-934.	1.5	0
269	Ferromagnetism in Cu-Doped ZnO Films Prepared by Filtered Cathodic Vacuum Arc Technique. ECS Transactions, 2008, 13, 143-149.	0.3	0
270	Si-Based Light-Emitting Structure Synthesized with Low-Energy Ion Implantation at a Low Dosage. Journal of Nanoscience and Nanotechnology, 2010, 10, 595-598.	0.9	0

#	Article	IF	CITATIONS
271	Single-mode narrow beam divergence surface-emitting concentric-circular-grating terahertz quantum cascade lasers. , 2012, , .		O
272	Methods to Enhance Upconversion Efficiency from Lanthanide-doped Nanomaterials., 2018,,.		0
273	Efficient analysis of high power nonlinear soliton propagation. , 1998, , .		O