

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymerâ^'Fullerene Solar Cells. Journal of the American Chemical Society, 2011, 133, 4625-4631.	6.6	1,463
2	Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 2012, 45, 607-632.	2.2	1,398
3	Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency. Angewandte Chemie - International Edition, 2011, 50, 2995-2998.	7.2	1,130
4	Hierarchical Porous Oâ€Đoped g ₃ N ₄ with Enhanced Photocatalytic CO ₂ Reduction Activity. Small, 2017, 13, 1603938.	5.2	1,025
5	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	6.6	813
6	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
7	Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 1806-1815.	6.6	528
8	Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9, 491-500.	15.6	527
9	The influence of molecular orientation on organic bulk heterojunction solar cells. Nature Photonics, 2014, 8, 385-391.	15.6	439
10	Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes. ACS Applied Materials & Interfaces, 2011, 3, 4075-4084.	4.0	351
11	The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. Accounts of Chemical Research, 2017, 50, 2401-2409.	7.6	309
12	Core–Shell Nitrogenâ€Doped Carbon Hollow Spheres/Co ₃ O ₄ Nanosheets as Advanced Electrode for Highâ€Performance Supercapacitor. Small, 2018, 14, e1702407.	5.2	309
13	Enhanced Photovoltaic Performance of Lowâ€Bandgap Polymers with Deep LUMO Levels. Angewandte Chemie - International Edition, 2010, 49, 7992-7995.	7.2	282
14	Parallel-like Bulk Heterojunction Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 5432-5435.	6.6	279
15	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	6.6	274
16	A Weak Donorâ^'Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1377-1383.	4.0	265
17	Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers. Journal of the American Chemical Society, 2014, 136, 15566-15576.	6.6	249
18	Enhancing Performance of Nonfullerene Acceptors via Sideâ€Chain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	11.1	249

#	Article	IF	CITATIONS
19	Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nature Communications, 2019, 10, 1276.	5.8	222
20	Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymerâ^'Fullerene Solar Cells. Journal of Physical Chemistry C, 2010, 114, 16793-16800.	1.5	218
21	A molecular interaction–diffusion framework for predicting organic solar cell stability. Nature Materials, 2021, 20, 525-532.	13.3	212
22	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	11.1	199
23	Characterization of the Polymer Energy Landscape in Polymer:Fullerene Bulk Heterojunctions with Pure and Mixed Phases. Journal of the American Chemical Society, 2014, 136, 14078-14088.	6.6	193
24	Controlling Molecular Weight of a High Efficiency Donorâ€Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Advanced Materials, 2014, 26, 4456-4462.	11.1	190
25	Organic Solar Cells beyond One Pair of Donor–Acceptor: Ternary Blends and More. Journal of Physical Chemistry Letters, 2013, 4, 1802-1810.	2.1	186
26	Donorâ^'Acceptor Polymers Incorporating Alkylated Dithienylbenzothiadiazole for Bulk Heterojunction Solar Cells: Pronounced Effect of Positioning Alkyl Chains. Macromolecules, 2010, 43, 811-820.	2.2	175
27	Hierarchical porous C/MnO ₂ composite hollow microspheres with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 8635-8643.	5.2	174
28	Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 21257-21265.	5.2	174
29	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	11.1	172
30	Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6, 5980.	2.8	170
31	Visible Light Photoinitiated Metal-Free Living Cationic Polymerization of 4-Methoxystyrene. Journal of the American Chemical Society, 2015, 137, 7580-7583.	6.6	167
32	Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water. Journal of Colloid and Interface Science, 2017, 504, 688-696.	5.0	167
33	Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. Journal of Power Sources, 2017, 359, 371-378.	4.0	154
34	Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends. Energy and Environmental Science, 2013, 6, 316-326.	15.6	153
35	Direct-Bandgap 2D Silver–Bismuth Iodide Double Perovskite: The Structure-Directing Influence of an Oligothiophene Spacer Cation. Journal of the American Chemical Society, 2019, 141, 7955-7964.	6.6	151
36	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	11.1	150

#	Article	IF	CITATIONS
37	Inversion of the Rectifying Effect in Diblock Molecular Diodes by Protonation. Journal of the American Chemical Society, 2005, 127, 10456-10457.	6.6	144
38	Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells. Joule, 2019, 3, 1328-1348.	11.7	143
39	Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chemical Communications, 2018, 54, 3731-3734.	2.2	140
40	Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report. Advanced Materials, 2017, 29, 1601391.	11.1	139
41	Twoâ€Dimensional Organic–Inorganic Hybrid Perovskites: A New Platform for Optoelectronic Applications. Advanced Materials, 2018, 30, e1802041.	11.1	138
42	Sequential Deposition of Organic Films with Ecoâ€Compatible Solvents Improves Performance and Enables Over 12%â€Efficiency Nonfullerene Solar Cells. Advanced Materials, 2019, 31, e1808153.	11.1	132
43	Low Band Gap Polymers Based on Benzo[1,2-b:4,5-b′]dithiophene: Rational Design of Polymers Leads to High Photovoltaic Performance. Macromolecules, 2010, 43, 4609-4612.	2.2	130
44	Synthesis of Diode Molecules and Their Sequential Assembly to Control Electron Transport. Angewandte Chemie - International Edition, 2004, 43, 4471-4475.	7.2	129
45	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	11.1	116
46	Structureâ€Property Optimizations in Donor Polymers via Electronics, Substituents, and Side Chains Toward High Efficiency Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1162-1177.	2.0	110
47	A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy and Environmental Science, 2012, 5, 6900.	15.6	107
48	Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid Organic-Inorganic Perovskites. Physical Review Letters, 2018, 121, 146401.	2.9	103
49	Effect of Core Size on Performance of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 5390-5396.	3.2	102
50	A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1802050.	10.2	97
51	Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies. Advanced Functional Materials, 2013, 23, 3463-3470.	7.8	91
52	The Importance of Entanglements in Optimizing the Mechanical and Electrical Performance of All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 5124-5132.	3.2	88
53	Panchromatic Sequentially Cast Ternary Polymer Solar Cells. Advanced Materials, 2017, 29, 1604603.	11.1	87
54	Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Twoâ€Đonor Polymer Blend. Advanced Materials, 2019, 31, e1808279.	11.1	79

#	Article	IF	CITATIONS
55	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	3.1	79
56	Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light―and Chargeâ€Manipulation Layer. Advanced Materials, 2018, 30, e1706083.	11.1	76
57	Low-Band-Gap Polymers That Utilize Quinoid Resonance Structure Stabilization by Thienothiophene: Fine-Tuning of HOMO Level. Macromolecules, 2011, 44, 872-877.	2.2	75
58	Tuning Fluorinated Benzotriazole Polymers through Alkylthio Substitution and Selenophene Incorporation for Bulk Heterojunction Solar Cells. Macromolecules, 2014, 47, 2289-2295.	2.2	75
59	The Role of Demixing and Crystallization Kinetics on the Stability of Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2020, 32, e2005348.	11.1	74
60	Conjugated Polymer Based on Polycyclic Aromatics for Bulk Heterojunction Organic Solar Cells: A Case Study of Quadrathienonaphthalene Polymers with 2% Efficiency. Advanced Functional Materials, 2010, 20, 635-643.	7.8	73
61	Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS Applied Materials & amp; Interfaces, 2016, 8, 4754-4761.	4.0	71
62	Energy transfer mechanisms in layered 2D perovskites. Journal of Chemical Physics, 2018, 148, 134706.	1.2	70
63	Conjugated Polymers of Fused Bithiophenes with Enhanced π-Electron Delocalization for Photovoltaic Applications. Macromolecules, 2008, 41, 5688-5696.	2.2	69
64	lron(ii) spin crossover films on Au(111): scanning probe microscopy and photoelectron spectroscopy. Chemical Communications, 2013, 49, 10446.	2.2	69
65	A General Approach toward Electron Deficient Triazole Units to Construct Conjugated Polymers for Solar Cells. Chemistry of Materials, 2015, 27, 6470-6476.	3.2	69
66	General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 33187-33197.	4.0	66
67	Supramolecular Self-Assembly of Conjugated Diblock Copolymers. Chemistry - A European Journal, 2004, 10, 986-993.	1.7	63
68	Aryl-Perfluoroaryl Interaction in Two-Dimensional Organic–Inorganic Hybrid Perovskites Boosts Stability and Photovoltaic Efficiency. , 2019, 1, 171-176.		63
69	A Tale of Current and Voltage: Interplay of Band Gap and Energy Levels of Conjugated Polymers in Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 10390-10396.	2.2	61
70	Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–Acceptor Copolymers. Chemistry of Materials, 2017, 29, 5990-6002.	3.2	57
71	Alkyl–Aryl Cation Mixing in Chiral 2D Perovskites. Journal of the American Chemical Society, 2021, 143, 18114-18120.	6.6	57
72	Lyotropic Liquidâ€Crystalline Solutions of Highâ€Concentration Dispersions of Singleâ€Walled Carbon Nanotubes with Conjugated Polymers. Small, 2009, 5, 1019-1024.	5.2	55

#	Article	IF	CITATIONS
73	Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 17561-17569.	6.6	55
74	Revealing the Impact of F4â€TCNQ as Additive on Morphology and Performance of Highâ€Efficiency Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806262.	7.8	55
75	0D/2D (Fe0.5Ni0.5)S2/rGO nanocomposite with enhanced supercapacitor and lithium ion battery performance. Journal of Power Sources, 2019, 426, 266-274.	4.0	54
76	Perfluorocarbon-based O ₂ nanocarrier for efficient photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 1116-1123.	2.9	53
77	Surface-Initiated Poly(3-methylthiophene) as a Hole-Transport Layer for Polymer Solar Cells with High Performance. ACS Applied Materials & Interfaces, 2012, 4, 5069-5073.	4.0	51
78	Investigation of Dopamine Analogues: Synthesis, Mechanistic Understanding, and Structure–Property Relationship. Langmuir, 2016, 32, 9873-9882.	1.6	51
79	Mantis shrimp–inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. Science Advances, 2021, 7, .	4.7	51
80	Tunable internal quantum well alignment in rationally designed oligomer-based perovskite films deposited by resonant infrared matrix-assisted pulsed laser evaporation. Materials Horizons, 2019, 6, 1707-1716.	6.4	48
81	Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Reports Physical Science, 2021, 2, 100381.	2.8	48
82	Comprehensive Investigation of Self-Assembled Monolayer Formation on Ferromagnetic Thin Film Surfaces. Journal of the American Chemical Society, 2008, 130, 9763-9772.	6.6	47
83	Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups. Materials Chemistry Frontiers, 2018, 2, 537-543.	3.2	46
84	Tuning optical and electronic properties of star-shaped conjugated molecules with enlarged ï€-delocalization for organic solar cell application. Journal of Materials Chemistry A, 2013, 1, 8270.	5.2	45
85	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44
86	The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic Ligands. Advanced Functional Materials, 2022, 32, .	7.8	43
87	Fully Functionalized Photorefractive Polymer with Infrared Sensitivity Based on Novel Chromophores. Macromolecules, 2003, 36, 7014-7019.	2.2	42
88	A carbon–oxygen-bridged hexacyclic ladder-type building block for low-bandgap nonfullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 700-703.	3.2	41
89	Selective Crystallization of Organic Semiconductors on Patterned Templates of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 2891-2896.	7.8	40
90	Conjugated Polymers Based on Benzo[2,1- <i>b</i> :3,4- <i>b′</i>]dithiophene with Low-Lying Highest Occupied Molecular Orbital Energy Levels for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2009, 1, 1613-1621.	4.0	40

#	Article	IF	CITATIONS
91	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie - International Edition, 2020, 59, 7203-7208.	7.2	40
92	Polycyclic Aromatics with Flanking Thiophenes: Tuning Energy Level and Band Gap of Conjugated Polymers for Bulk Heterojunction Photovoltaics. Macromolecules, 2010, 43, 797-804.	2.2	39
93	Green-Solvent-Processed Conjugated Polymers for Organic Solar Cells: The Impact of Oligoethylene Glycol Side Chains. ACS Applied Polymer Materials, 2019, 1, 804-814.	2.0	39
94	Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.	2.7	38
95	Measuring Temperature-Dependent Miscibility for Polymer Solar Cell Blends: An Easily Accessible Optical Method Reveals Complex Behavior. Chemistry of Materials, 2018, 30, 3943-3951.	3.2	38
96	Synthesis and Structure/Property Correlation of Fully Functionalized Photorefractive Polymers. Macromolecules, 2002, 35, 4636-4645.	2.2	37
97	Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer–Fullerene Blend Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 11658-11666.	4.0	37
98	Fabrication of hierarchical bristle-grass-like NH4Al(OH)2CO3@Ni(OH)2 core-shell structure and its enhanced Congo red adsorption performance. Journal of Alloys and Compounds, 2018, 750, 644-654.	2.8	37
99	Soluble Reduced Graphene Oxide Sheets Grafted with Polypyridylruthenium-Derivatized Polystyrene Brushes as Light Harvesting Antenna for Photovoltaic Applications. ACS Nano, 2013, 7, 7992-8002.	7.3	36
100	Designing Simple Conjugated Polymers for Scalable and Efficient Organic Solar Cells. ChemSusChem, 2021, 14, 3561-3568.	3.6	36
101	Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers. Journal of the American Chemical Society, 2016, 138, 2078-2081.	6.6	34
102	Shear-Enhanced Transfer Printing of Conducting Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 31560-31567.	4.0	34
103	Ultrafast Exciton Transport with a Long Diffusion Length in Layered Perovskites with Organic Cation Functionalization. Advanced Materials, 2020, 32, e2004080.	11.1	34
104	Sequence Effects in Donor–Acceptor Oligomeric Semiconductors Comprising Benzothiadiazole and Phenylenevinylene Monomers. Macromolecules, 2017, 50, 151-161.	2.2	33
105	Understanding of Face-On Crystallites Transitioning to Edge-On Crystallites in Thiophene-Based Conjugated Polymers. Chemistry of Materials, 2021, 33, 4541-4550.	3.2	33
106	Morphology linked to miscibility in highly amorphous semi-conducting polymer/fullerene blends. Polymer, 2014, 55, 4884-4889.	1.8	32
107	Anion–Dipole Interactions Make the Homopolymers Selfâ€Assemble into Multiple Nanostructures. Advanced Materials, 2015, 27, 3202-3207.	11.1	31
108	Comparative Photovoltaic Study of Physical Blending of Two Donor–Acceptor Polymers with the Chemical Blending of the Respective Moieties. Macromolecules, 2016, 49, 2533-2540.	2.2	31

#	Article	IF	CITATIONS
109	Imaging Carrier Diffusion in Perovskites with a Diffractive Optic-Based Transient Absorption Microscope. Journal of Physical Chemistry C, 2018, 122, 10650-10656.	1.5	31
110	Competition between Exceptionally Longâ€Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties. Advanced Functional Materials, 2019, 29, 1806977.	7.8	31
111	Roles of Interfacial Modifiers in Hybrid Solar Cells: Inorganic/Polymer Bilayer vs Inorganic/Polymer:Fullerene Bulk Heterojunction. ACS Applied Materials & Interfaces, 2014, 6, 803-810.	4.0	29
112	Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. Journal of the American Chemical Society, 2021, 143, 15918-15923.	6.6	29
113	Tunneling Characteristics of Au–Alkanedithiol–Au Junctions formed via Nanotransfer Printing (nTP). Journal of the American Chemical Society, 2012, 134, 12072-12082.	6.6	28
114	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	5.8	28
115	A molecular tandem cell for efficient solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13256-13260.	3.3	28
116	Donor polymer fluorination doubles the efficiency in non-fullerene organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 22536-22541.	5.2	27
117	Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549.	3.2	27
118	Resolving Rotational Stacking Disorder and Electronic Level Alignment in a 2D Oligothiophene-Based Lead Iodide Perovskite. Chemistry of Materials, 2019, 31, 8523-8532.	3.2	26
119	Fine Optimization of Morphology Evolution Kinetics with Binary Additives for Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Science, 2019, 6, 1801560.	5.6	26
120	Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 3473-3480.	2.1	26
121	Panchromatic Allâ€Polymer Photodetector with Tunable Polarization Sensitivity. Advanced Optical Materials, 2019, 7, 1801346.	3.6	26
122	Real Function of Semiconducting Polymer in GaAs/Polymer Planar Heterojunction Solar Cells. ACS Nano, 2013, 7, 6619-6626.	7.3	24
123	Distinction between PTB7-Th samples prepared from Pd(PPh ₃) ₄ and Pd ₂ (dba) ₃ /P(<i>o</i> -tol) ₃ catalysed stille coupling polymerization and the resultant photovoltaic performance. Journal of Materials Chemistry A, 2018, 6, 179-188.	5.2	24
124	Coherent control of asymmetric spintronic terahertz emission from two-dimensional hybrid metal halides. Nature Communications, 2021, 12, 5744.	5.8	24
125	Highâ€Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer. Advanced Energy Materials, 2020, 10, 2000823.	10.2	23
126	Dramatic Enhancement of Photorefractive Properties by Controlling Electron Trap Density in a Monolithic Material. Advanced Materials, 2004, 16, 356-360.	11.1	22

#	Article	IF	CITATIONS
127	Metalâ^'Moleculeâ^'Metal Junctions via PFPE Assisted Nanotransfer Printing (nTP) onto Self-Assembled Monolayers. Journal of the American Chemical Society, 2009, 131, 13202-13203.	6.6	22
128	Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. Journal of Physical Chemistry C, 2017, 121, 2059-2068.	1.5	22
129	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	3.1	21
130	Imaging Excited State Dynamics in Layered 2D Perovskites with Transient Absorption Microscopy. Journal of Physical Chemistry A, 2019, 123, 11012-11021.	1.1	21
131	Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors. Nature Communications, 2022, 13, 2739.	5.8	20
132	An investigation of siloxane cross-linked hydroxyapatite–gelatin/copolymer composites for potential orthopedic applications. Journal of Materials Chemistry, 2012, 22, 22888.	6.7	19
133	Distinguishing Energy- and Charge-Transfer Processes in Layered Perovskite Quantum Wells with Two-Dimensional Action Spectroscopies. Journal of Physical Chemistry Letters, 2020, 11, 4570-4577.	2.1	19
134	Importance of Nucleophilicity of Chain-Transfer Agents for Controlled Cationic Degenerative Chain-Transfer Polymerization. Macromolecules, 2020, 53, 4303-4311.	2.2	19
135	Fluorination of Donor–Acceptor Copolymer Active Layers Enhances Charge Mobilities in Thin-Film Transistors. ACS Macro Letters, 2017, 6, 1162-1167.	2.3	18
136	Semi-paracrystallinity in semi-conducting polymers. Materials Horizons, 2022, 9, 1196-1206.	6.4	18
137	Effect of Cyano Substitution on Conjugated Polymers for Bulk Heterojunction Solar Cells. ACS Applied Polymer Materials, 2019, 1, 3313-3322.	2.0	17
138	Shifting Electronic Structure by Inherent Tension in Molecular Bottlebrushes with Polythiophene Backbones. ACS Macro Letters, 2014, 3, 738-742.	2.3	16
139	Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons. Advanced Energy Materials, 2016, 6, 1301032.	10.2	16
140	Understanding the side-chain effects on A–D–A acceptors: in-plane and out-of-plane. Materials Chemistry Frontiers, 2018, 2, 1563-1567.	3.2	16
141	Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Physical Review Materials, 2020, 4, .	0.9	16
142	Improved Synthesis of Thienothiazole and Its Utility in Developing Polymers for Photovoltaics. Macromolecules, 2011, 44, 9146-9154.	2.2	15
143	Laterally patterned magnetic nanoparticles. Journal of Materials Chemistry, 2012, 22, 1962-1968.	6.7	15
144	Morphological Effects on the Small-Molecule-Based Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15767-15773.	4.0	15

#	Article	IF	CITATIONS
145	Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para-alkoxystyrene. Polymer Chemistry, 2019, 10, 4126-4133.	1.9	15
146	Enhancing Photovoltaic Performance of Aromatic Ammoniumâ€based Twoâ€Dimensional Organicâ€Inorganic Hybrid Perovskites via Tuning CH··Ĩ€ Interaction. Solar Rrl, 2020, 4, 1900374.	3.1	15
147	Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials, 2020, 3, 10814-10822.	2.5	15
148	Resolving the Molecular Origin of Mechanical Relaxations in Donor–Acceptor Polymer Semiconductors. Advanced Functional Materials, 2022, 32, 2105597.	7.8	15
149	Fine-tuning photorefractive properties of monolithic molecular materials. Applied Physics Letters, 2003, 82, 3385-3387.	1.5	14
150	Growth of nickel nanoparticles on an organic self-assembled monolayer template by means of electroless plating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 194-199.	2.3	14
151	Utilizing Difluorinated Thiophene Units To Improve the Performance of Polymer Solar Cells. Macromolecules, 2019, 52, 6523-6532.	2.2	14
152	Functionalization of Benzotriazole-Based Conjugated Polymers for Solar Cells: Heteroatom vs Substituents. ACS Applied Polymer Materials, 2021, 3, 30-41.	2.0	14
153	The finale of a trilogy: comparing terpolymers and ternary blends with structurally similar backbones for use in organic bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 19190-19200.	5.2	13
154	Reversible addition–fragmentation chain transfer step-growth polymerization with commercially available inexpensive bis-maleimides. Polymer Chemistry, 2022, 13, 2589-2594.	1.9	13
155	End-cap Group Engineering of a Small Molecule Non-Fullerene Acceptor: The Influence of Benzothiophene Dioxide. ACS Applied Energy Materials, 2018, 1, 7146-7152.	2.5	12
156	The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1642-1652.	3.2	12
157	Investigating the Stress–Strain Behavior in Ring-Opening Metathesis Polymerization-Based Brush Elastomers. Macromolecules, 2021, 54, 8365-8371.	2.2	12
158	Recent Progress on Highly Efficient Bulk Heterojunction Polymer Solar Cells. ACS Symposium Series, 2010, , 71-80.	0.5	11
159	Orientation effect on GaAs/ultrathin polymer/PEDOT:PSS hybrid solar cell. Organic Electronics, 2015, 16, 71-76.	1.4	11
160	Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene. Journal of Physical Chemistry C, 2017, 121, 10305-10316.	1.5	11
161	A Ladder-type Heteroheptacene 12 <i>H</i> -Dithieno[2′,3′:4,5]thieno[3,2- <i>b</i> :2′,3′- <i>h</i>]fluor Based D-A Copolymer with Strong Intermolecular Interactions toward Efficient Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 35159-35168.	ene 4.0	11
162	Effect of Replacing Alkyl Side Chains with Triethylene Glycols on Photovoltaic Properties of Easily Accessible Fluorene-Based Non-Fullerene Molecular Acceptors: Improve or Deteriorate?. ACS Applied Energy Materials, 2018, 1, 1276-1285.	2.5	11

#	Article	IF	CITATIONS
163	Sensitivity of Molecular Packing and Photovoltaic Performance to Subtle Fluctuation of Steric Distortions within D–A Copolymer Backbones. ACS Applied Energy Materials, 2018, 1, 4332-4340.	2.5	11
164	Thermocleavage of Partial Side Chains in Polythiophenes Offers Appreciable Photovoltaic Efficiency and Significant Morphological Stability. Chemistry of Materials, 2021, 33, 4745-4756.	3.2	11
165	The effect of passivation on different GaAs surfaces. Applied Physics Letters, 2013, 103, 173902.	1.5	10
166	Morphology, Structure, and Enhanced Intramolecular Conduction in Ultralong Conjugated Polymer Brushes. Journal of Physical Chemistry C, 2018, 122, 7586-7596.	1.5	10
167	Nonlinear fluorescence spectroscopy of layered perovskite quantum wells. Journal of Chemical Physics, 2020, 153, 134202.	1.2	10
168	Ultrafast Spectroscopic Signatures of Coherent Electron-Transfer Mechanisms in a Transition Metal Complex. Journal of Physical Chemistry A, 2016, 120, 5773-5790.	1.1	9
169	Pairing 1D/2D-conjugation donors/acceptors towards high-performance organic solar cells. Materials Chemistry Frontiers, 2019, 3, 276-283.	3.2	9
170	Nonlinear Photocurrent Spectroscopy of Layered 2D Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 7362-7367.	2.1	9
171	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie, 2020, 132, 7270-7275.	1.6	9
172	Elucidation of Quantum-Well-Specific Carrier Mobilities in Layered Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 1116-1123.	2.1	9
173	Excited-State Photophysics in a Low Band Gap Polymer with High Photovoltaic Efficiency. Journal of Physical Chemistry C, 2011, 115, 2371-2380.	1.5	8
174	The role of temperature in forming sol–gel biocomposites containing polydopamine. Journal of Materials Chemistry B, 2014, 2, 7704-7711.	2.9	8
175	Effects of Fluorination Position on Fusedâ€Ring Electron Acceptors. Small Structures, 2020, 1, 2000006.	6.9	8
176	Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741.	5.2	8
177	Sifting α,ï‰-di(thiophen-2-yl)alkanes as solvent additives to boost the photovoltaic performance of the PTB7-Th:PC ₇₁ BM blend. Journal of Materials Chemistry A, 2018, 6, 20788-20794.	5.2	7
178	Organic Solar Cells with Large Insensitivity to Donor Polymer Molar Mass across All Acceptor Classes. ACS Applied Polymer Materials, 2020, 2, 5300-5308.	2.0	7
179	Multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2021, 154, 220901.	1.2	7
180	Ultraâ€High Alignment of Polymer Semiconductor Blends Enabling Photodetectors with Exceptional Polarization Sensitivity. Advanced Functional Materials, 2022, 32, 2105820.	7.8	7

#	Article	IF	CITATIONS
181	Aggregation Controlled Charge Generation in Fullerene Based Bulk Heterojunction Polymer Solar Cells: Effect of Additive. Polymers, 2021, 13, 115.	2.0	6
182	Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS Applied Materials & Interfaces, 2021, 13, 52647-52658.	4.0	6
183	Dramatic Improvement of the Mechanical Strength of Silane-Modified Hydroxyapatite–Gelatin Composites via Processing with Cosolvent. ACS Omega, 2018, 3, 3592-3598.	1.6	5
184	Post-polymerization modification of phosphorus containing conjugated copolymers. European Polymer Journal, 2018, 104, 157-163.	2.6	5
185	Pronounced photorefractive effect at wavelength over 1000 nm in monolithic organic materials. Applied Physics Letters, 2005, 86, 151906.	1.5	4
186	Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy. Journal of Chemical Physics, 2016, 145, 101101.	1.2	4
187	Probing Carrier Transport in Layered Perovskites with Nonlinear Optical and Photocurrent Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 8021-8030.	1.5	4
188	Effect of a trapping molecule on the monolithic organic photorefractive materials. Applied Physics Letters, 2004, 85, 5221-5223.	1.5	3
189	Solar Cells: Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent (Adv. Mater. 8/2018). Advanced Materials, 2018, 30, 1870054.	11.1	3
190	Optical studies of native defects in π-conjugated donor–acceptor copolymers. Journal of Applied Physics, 2018, 123, .	1.1	3
191	Effect of osmotic ballast properties on the performance of a concentration gradient battery. Water Research, 2022, 212, 118076.	5.3	3
192	Origin of layered perovskite device efficiencies revealed by multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2022, 156, 084202.	1.2	3
193	Direct Optical Observation of Stimulated Emission from Hot Charge Transfer Excitons in Bulk Heterojunction Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19697-19702.	1.5	2
194	Transforming the molecular orientation of crystalline lamellae by the degree of multi-fluorination within D–A copolymers and its effect on photovoltaic performance. Journal of Materials Chemistry C, 2018, 6, 10513-10523.	2.7	2
195	Initiation and Polymer Density of Conjugated Polymer Brushes. Journal of Physical Chemistry B, 2020, 124, 9734-9744.	1.2	2
196	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2070065.	3.1	2
197	Bio-inspired spectropolarimetric sensor based on tandem organic photodetectors and multi-twist liquid crystals. Optics Express, 2021, 29, 43953.	1.7	2
198	Self-Assembled Monolayer of Mixed Gold and Nickel Nanoparticles. Nano-Micro Letters, 2012, 4, 166-171.	14.4	1

#	Article	IF	CITATIONS
199	Organic Photovoltaics: Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons (Adv. Energy Mater. 1/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
200	CHAPTER 15. Donor–Acceptor Alternating Copolymers. RSC Polymer Chemistry Series, 2013, , 319-342.	0.1	1
201	Organic Solar Cells: Highâ€Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070109.	10.2	0
202	(Invited) Conjugated Polymer Brushes: A New Platform to Investigate Intramolecular Charge Transport?. ECS Meeting Abstracts, 2018, , .	0.0	0
203	Design and Synthesis of Conjugated Polymers for Solar Cells. Materials and Energy, 2018, , 1-30.	2.5	0
204	The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation). , 2019, , .		0
205	Competition between exceptionally long-range alkyl sidechain ordering and backbone ordering in semiconducting polymers and its impact on electronic and optoelectronic properties. Advanced Functional Materials, 2018, 29, .	7.8	0
206	Non-Covalent Interactions in Organic/Inorganic Hybrid 2D Perovskites. , 2022, , 153-193.		0