
Yukiko Goda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7349593/publications.pdf Version: 2024-02-01

YUKIKO CODA

#	Article	IF	CITATIONS
1	Astrocyte–synapse interactions and cell adhesion molecules. FEBS Journal, 2023, 290, 3512-3526.	2.2	19
2	The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Frontiers in Synaptic Neuroscience, 2022, 14, 833782.	1.3	15
3	My Neighbour Hetero — deconstructing the mechanisms underlying heterosynaptic plasticity. Current Opinion in Neurobiology, 2021, 67, 106-114.	2.0	28
4	Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites. Cell Reports, 2021, 34, 108693.	2.9	20
5	Editorial overview: Molecular neuroscience. Current Opinion in Neurobiology, 2021, 69, iii-v.	2.0	Ο
6	Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. ELife, 2021, 10, .	2.8	14
7	Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Molecular Psychiatry, 2020, 25, 2695-2711.	4.1	73
8	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	4.9	35
9	Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biology, 2019, 17, e2006223.	2.6	24
10	GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA _A receptor trafficking and social behavior. Science Advances, 2019, 5, eaau8237.	4.7	41
11	Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Reports, 2017, 20, 333-343.	2.9	46
12	Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proceedings of the United States of America, 2016, 113, E2685-94.	3.3	88
13	Adhesion Molecules in Synapse Assembly and Function. , 2016, , 425-465.		1
14	Integrins in synapse regulation. Nature Reviews Neuroscience, 2016, 17, 745-756.	4.9	133
15	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	7.1	122
16	Tuning synapses by proteolytic remodeling of the adhesive surface. Current Opinion in Neurobiology, 2015, 35, 148-155.	2.0	18
17	The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Frontiers in Cellular Neuroscience, 2014, 8, 401.	1.8	243
18	The interplay between Hebbian and homeostatic synaptic plasticity. Journal of Cell Biology, 2013, 203, 175-186.	2.3	136

Υυκικό Goda

#	Article	IF	CITATIONS
19	CA3 Mossy Fiber Connections: Giant Synapses that Gain Control. Neuron, 2013, 77, 4-6.	3.8	4
20	β3 integrin interacts directly with CluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1323-1328.	3.3	69
21	The X-Linked Intellectual Disability Protein TSPAN7 Regulates Excitatory Synapse Development and AMPAR Trafficking. Neuron, 2012, 73, 1143-1158.	3.8	97
22	Homeostatic synaptic plasticity: from single synapses to neural circuits. Current Opinion in Neurobiology, 2012, 22, 516-521.	2.0	112
23	Differential control of presynaptic efficacy by postsynaptic N-cadherin and \hat{l}^2 -catenin. Nature Neuroscience, 2012, 15, 81-89.	7.1	71
24	β3 integrin is dispensable for conditioned fear and Hebbian forms of plasticity in the hippocampus. European Journal of Neuroscience, 2012, 36, 2461-2469.	1.2	25
25	A stabilising influence: Integrins in regulation of synaptic plasticity. Neuroscience Research, 2011, 70, 24-29.	1.0	57
26	Synaptic function and regulation. Current Opinion in Neurobiology, 2011, 21, 205-207.	2.0	2
27	A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons. Neuron, 2010, 66, 37-44.	3.8	131
28	Unraveling Mechanisms of Homeostatic Synaptic Plasticity. Neuron, 2010, 66, 337-351.	3.8	467
29	Dendritic signalling and homeostatic adaptation. Current Opinion in Neurobiology, 2009, 19, 327-335.	2.0	61
30	Along memory lane. Nature, 2008, 456, 590-591.	13.7	7
31	Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nature Reviews Neuroscience, 2008, 9, 344-356.	4.9	685
32	Activity-Dependent Regulation of Synaptic AMPA Receptor Composition and Abundance by β3 Integrins. Neuron, 2008, 58, 749-762.	3.8	197
33	Local Dendritic Activity Sets Release Probability at Hippocampal Synapses. Neuron, 2008, 59, 475-485.	3.8	215
34	Differential involvement of β3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation. Neuron Glia Biology, 2008, 4, 179-187.	2.0	53
35	Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14656-14661.	3.3	45
36	beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13479-13484.	3.3	108

Υυκικό Goda

#	Article	IF	CITATIONS
37	Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neuroscience, 2006, 9, 315-321.	7.1	186
38	An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy. Nature Protocols, 2006, 1, 988-994.	5.5	41
39	Photoconductive stimulation of neurons cultured on silicon wafers. Nature Protocols, 2006, 1, 461-467.	5.5	34
40	Myosin Light Chain Kinase Is Not a Regulator of Synaptic Vesicle Trafficking during Repetitive Exocytosis in Cultured Hippocampal Neurons. Journal of Neuroscience, 2006, 26, 11606-11614.	1.7	31
41	THE ACTIN CYTOSKELETON: Integrating Form and Function at the Synapse. Annual Review of Neuroscience, 2005, 28, 25-55.	5.0	364
42	Synaptotagmin in Ca2+-Dependent Exocytosis. Neuron, 2003, 38, 521-524.	3.8	28
43	Mechanisms of Synapse Assembly and Disassembly. Neuron, 2003, 40, 243-264.	3.8	262
44	Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1012-1016.	3.3	299
45	Cadherins Communicate Structural Plasticity of Presynaptic and Postsynaptic Terminals. Neuron, 2002, 35, 1-3.	3.8	93
46	Remodeling of Synaptic Actin Induced by Photoconductive Stimulation. Cell, 2001, 107, 605-616.	13.5	248
47	Properties of Synchronous and Asynchronous Release During Pulse Train Depression in Cultured Hippocampal Neurons. Journal of Neurophysiology, 2001, 85, 2324-2334.	0.9	136
48	Actin-Dependent Regulation of Neurotransmitter Release at Central Synapses. Neuron, 2000, 27, 539-550.	3.8	268
49	Nomadic AMPA Receptors and LTP. Neuron, 1999, 23, 431-434.	3.8	27
50	SV2A and SV2B Function as Redundant Ca2+ Regulators in Neurotransmitter Release. Neuron, 1999, 24, 1003-1016.	3.8	324
51	Memory mechanisms: The nociceptin connection. Current Biology, 1998, 8, R889-R891.	1.8	9
52	Synaptic Adhesion: the Building Blocks of Memory?. Neuron, 1998, 20, 1059-1062.	3.8	27
53	Neurexin Iα Is a Major α-Latrotoxin Receptor That Cooperates in α-Latrotoxin Action. Journal of Biological Chemistry, 1998, 273, 1705-1710.	1.6	92
54	Readily releasable pool size changes associated with long term depression. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1283-1288.	3.3	62

Υυκικό Goda

#	Article	IF	CITATIONS
55	Calcium regulation of neurotransmitter release: reliably unreliable?. Current Opinion in Cell Biology, 1997, 9, 513-518.	2.6	69
56	The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature, 1997, 387, 810-814.	13.7	399
57	Long-Term Depression Properties in a Simple System. Neuron, 1996, 16, 103-111.	3.8	66
58	Synaptic plasticity: The basis of particular types of learning. Current Biology, 1996, 6, 375-378.	1.8	48
59	Chapter 1 The gene knockout technology for the analysis of learning and memory, and neural development. Progress in Brain Research, 1995, 105, 3-14.	0.9	21
60	Memory Mechanisms: A common cascade for long-term memory. Current Biology, 1995, 5, 136-138.	1.8	15
61	Memory Mechanisms: Photographic memory in flies. Current Biology, 1995, 5, 852-853.	1.8	5
62	Long-Term Potentiation: In pursuit of a retrograde messenger. Current Biology, 1994, 4, 148-150.	1.8	9
63	Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell, 1994, 79, 717-727.	13.5	1,377
64	Two components of transmitter release at a central synapse Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12942-12946.	3.3	470
65	Modified hippocampal long-term potentiation in PKCÎ ³ -mutant mice. Cell, 1993, 75, 1253-1262.	13.5	643
66	[15] Transport from late endosomes to trans-golgi network in semiintact cell extracts. Methods in Enzymology, 1992, 219, 153-159.	0.4	2
67	Identification of a novel, N-ethylmaleimide-sensitive cytosolic factor required for vesicular transport from endosomes to the trans-Golgi network in vitro Journal of Cell Biology, 1991, 112, 823-831.	2.3	59
68	Antibodies to clathrin inhibit endocytosis but not recycling to the trans Golgi network in vitro. Science, 1990, 248, 1539-1541.	6.0	54
69	Selective recycling of the mannose 6-phosphate/IGF-II receptor to the trans Golgi network in vitro. Cell, 1988, 55, 309-320.	13.5	187
70	Efficient modification ofE. coliRNA polymerasein vitroby theNgene transcription antitermination protein of bacteriophage lambda. Nucleic Acids Research, 1985, 13, 2569-2582.	6.5	29
71	Pseudobase formation from 9-substituted 10-methylacridinium cations in aqueous solution. Canadian Journal of Chemistry, 1984, 62, 351-354.	0.6	23
72	How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4