Jiquan Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7349590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Producing more grain with lower environmental costs. Nature, 2014, 514, 486-489.	27.8	1,292
2	Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Scientific Reports, 2018, 8, 12736.	3.3	70
3	Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biology, 2015, 15, 288.	3.6	31
4	Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genetics, 2018, 19, 63.	2.7	28
5	Transcriptome Dynamics during Maize Endosperm Development. PLoS ONE, 2016, 11, e0163814.	2.5	26
6	Response of Soil Temperature, Moisture, and Spring Maize (Zea mays L.) Root/Shoot Growth to Different Mulching Materials in Semi-Arid Areas of Northwest China. Agronomy, 2020, 10, 453.	3.0	22
7	Bivariate flow cytometric analysis and sorting of different types of maize starch grains. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 213-221.	1.5	18
8	Genome-wide prediction in a hybrid maize population adapted to Northwest China. Crop Journal, 2020, 8, 830-842.	5.2	14
9	Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy, 2021, 11, 1452.	3.0	14
10	QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica, 2018, 214, 1.	1.2	11
11	ZmSMR4, a novel cyclin-dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a key player in plant growth, development and tolerance to abiotic stress. Plant Science, 2019, 280, 120-131.	3.6	11
12	Comparison of gelatinization method, starch concentration, and plasticizer on physical properties of highâ€amylose starch films. Journal of Food Process Engineering, 2018, 41, e12645.	2.9	10
13	Evaluation of Yield-Based Low Nitrogen Tolerance Indices for Screening Maize (Zea mays L.) Inbred Lines. Agronomy, 2019, 9, 240.	3.0	10
14	Identification of Ear Morphology Genes in Maize (Zea mays L.) Using Selective Sweeps and Association Mapping. Frontiers in Genetics, 2020, 11, 747.	2.3	10
15	Identification of quantitative trait loci for agronomic and physiological traits in maize (Zea mays L.) under high-nitrogen and low-nitrogen conditions. Euphytica, 2018, 214, 1.	1.2	9
16	Genome-wide association study (GWAS) reveals genetic basis of ear-related traits in maize. Euphytica, 2020, 216, 1.	1.2	9
17	Genome-wide evolutionary characterization and expression analysis of SIAMESE-RELATED family genes in maize. BMC Evolutionary Biology, 2020, 20, 91.	3.2	8
18	Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study. Molecular Breeding, 2020, 40, 1.	2.1	8

JIQUAN XUE

#	Article	IF	CITATIONS
19	Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chemistry, 2022, 368, 130796.	8.2	8
20	Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ, 2019, 7, e7528.	2.0	8
21	The distribution pattern of endopolyploidy in maize. Theoretical and Applied Genetics, 2019, 132, 1487-1503.	3.6	6
22	Multi-Site Evaluation of Accumulated Temperature and Rainfall for Maize Yield and Disease in Loess Plateau. Agriculture (Switzerland), 2021, 11, 373.	3.1	4
23	Effects of Different Thermal Treatment Methods on Preparation and Physical Properties of High Amylose Maize Starch Based Films. International Journal of Food Engineering, 2018, 14, .	1.5	3
24	New insights into the response of maize to fluctuations in the light environment. Molecular Genetics and Genomics, 2021, 296, 615-629.	2.1	3
25	Genetic analysis of earâ€related traits under different pollination treatments in maize (Zea mays). Plant Breeding, 2021, 140, 211-222.	1.9	3
26	Dark Response of Seedlings Evaluated by Chlorophyll Concentration in Maize Natural Population. American Journal of Plant Sciences, 2015, 06, 2209-2219.	0.8	3
27	Identification of favorable alleles in the non-yellow coloring 1 gene by association mapping in maize. Euphytica, 2017, 213, 1.	1.2	2
28	Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group. Agriculture (Switzerland), 2022, 12, 11.	3.1	1
29	Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development. BMC Genomic Data, 2021, 22, 28.	1.7	0
30	Trends in grain quality of starch, protein, fat and lysine content for normal maize varieties in China since the 1960s. Cereal Chemistry, 0, , .	2.2	0