
Kristoffer Sahlholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remote local photoactivation of morphine produces analgesia without opioidâ€related adverse effects. British Journal of Pharmacology, 2023, 180, 958-974.	5.4	15
2	Evidence for Two Modes of Binding of the Negative Allosteric Modulator SB269,652 to the Dopamine D2 Receptor. Biomedicines, 2022, 10, 22.	3.2	1
3	Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. Neuropsychopharmacology, 2021, 46, 665-672.	5.4	24
4	V374A KCND3 Pathogenic Variant Associated With Paroxysmal Ataxia Exacerbations. Neurology: Genetics, 2021, 7, e546.	1.9	10
5	Mechanistic insights into dopaminergic and serotonergic neurotransmission – concerted interactions with helices 5 and 6 drive the functional outcome. Chemical Science, 2021, 12, 10990-11003.	7.4	7
6	Interaction of Ligands for PET with the Dopamine D3 Receptor: In Silico and In Vitro Methods. Biomolecules, 2021, 11, 529.	4.0	6
7	Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue. International Journal of Molecular Sciences, 2021, 22, 4078.	4.1	5
8	Synthetic corticosteroids as tryptophan hydroxylase stabilizers. Future Medicinal Chemistry, 2021, 13, 1465-1474.	2.3	2
9	G proteinâ€coupled receptor kinaseâ€2 confers isoformâ€specific calcium sensitivity to dopamine D ₂ receptor desensitization. FASEB Journal, 2021, 35, e22013.	0.5	3
10	Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole—In Vitro and In Vivo Investigations. Frontiers in Pharmacology, 2020, 11, 593416.	3.5	10
11	Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Medicinal Chemistry, 2020, 12, 1461-1474.	2.3	10
12	A Neanderthal Sodium Channel Increases Pain Sensitivity in Present-Day Humans. Current Biology, 2020, 30, 3465-3469.e4.	3.9	33
13	Voltage-Dependent Dopamine Potency at D1-Like Dopamine Receptors. Frontiers in Pharmacology, 2020, 11, 581151.	3.5	12
14	Ligand with Two Modes of Interaction with the Dopamine D ₂ Receptor–An Induced-Fit Mechanism of Insurmountable Antagonism. ACS Chemical Neuroscience, 2020, 11, 3130-3143.	3.5	8
15	Leveraging a Low-Affinity Diazaspiro Orthosteric Fragment to Reduce Dopamine D ₃ Receptor (D ₃ R) Ligand Promiscuity across Highly Conserved Aminergic G-Protein-Coupled Receptors (GPCRs). Journal of Medicinal Chemistry, 2019, 62, 5132-5147.	6.4	15
16	Point mutation of a conserved aspartate, D69, in the muscarinic M 2 Âreceptor does not modify voltage-sensitive agonist potency. Biochemical and Biophysical Research Communications, 2018, 496, 101-104.	2.1	10
17	Behavioral control by striatal adenosine A _{2A} â€dopamine D ₂ receptor heteromers. Genes, Brain and Behavior, 2018, 17, e12432.	2.2	27
18	Antipsychotic-Like Efficacy of Dopamine D2 Receptor-Biased Ligands is Dependent on Adenosine A2A Receptor Expression. Molecular Neurobiology, 2018, 55, 4952-4958.	4.0	28

KRISTOFFER SAHLHOLM

#	Article	IF	CITATIONS
19	Dopamine receptor heteromers: biasing antipsychotics. Future Medicinal Chemistry, 2018, 10, 2675-2677.	2.3	2
20	Antipsychotics with similar association kinetics at dopamine D2 receptors differ in extrapyramidal side-effects. Nature Communications, 2018, 9, 3577.	12.8	6
21	Pridopidine Reverses Phencyclidine-Induced Memory Impairment. Frontiers in Pharmacology, 2018, 9, 338.	3.5	9
22	The Beta-Arrestin-Biased Dopamine D2 Receptor Ligand, UNC9994, Is a Partial Agonist at G-Protein-Mediated Potassium Channel Activation. International Journal of Neuropsychopharmacology, 2018, 21, 1102-1108.	2.1	15
23	Effects of the Dopamine Stabilizer, Pridopidine, on Basal and Phencyclidine-Induced Locomotion: Role of Dopamine D2 and Sigma-1 Receptors. CNS and Neurological Disorders - Drug Targets, 2018, 17, 522-527.	1.4	3
24	The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation. Psychopharmacology, 2017, 234, 2019-2030.	3.1	4
25	Highly Selective Dopamine D ₃ Receptor Antagonists with Arylated Diazaspiro Alkane Cores. Journal of Medicinal Chemistry, 2017, 60, 9905-9910.	6.4	27
26	The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor. European Neuropsychopharmacology, 2016, 26, 467-476.	0.7	38
27	G Protein-Gated Inwardly Rectifying Potassium Channel Subunits 1 and 2 are Down-Regulated in Rat Dorsal Root Ganglion Neurons and Spinal Cord after Peripheral Axotomy. Molecular Pain, 2015, 11, s12990-015-0044.	2.1	18
28	Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. Journal of the American Chemical Society, 2015, 137, 15892-15898.	13.7	109
29	Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice. Biochemical and Biophysical Research Communications, 2015, 460, 439-445.	2.1	16
30	Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology, 2015, 232, 3443-3453.	3.1	55
31	Typical and atypical antipsychotics do not differ markedly in their reversibility of antagonism of the dopamine D2 receptor. International Journal of Neuropsychopharmacology, 2014, 17, 149-155.	2.1	16
32	The dopamine stabilizers ACR16 and (â^')-OSU6162 display nanomolar affinities at the σ-1 receptor. Molecular Psychiatry, 2013, 18, 12-14.	7.9	70
33	Voltage sensitivities and deactivation kinetics of histamine H3 and H4 receptors. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3081-3089.	2.6	19
34	The role of RGS protein in agonist-dependent relaxation of GIRK currents in Xenopus oocytes. Biochemical and Biophysical Research Communications, 2011, 415, 509-514.	2.1	8
35	Agonist-specific voltage sensitivity at the dopamine D2S receptor – Molecular determinants and relevance to therapeutic ligands. Neuropharmacology, 2011, 61, 937-949.	4.1	31
36	Evidence for oligomerization between GABA _B receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. European Journal of Neuroscience, 2010, 32, 1265-1277.	2.6	52

#	Article	IF	CITATIONS
37	Cocaine produces D2R-mediated conformational changes in the adenosine A2AR-dopamine D2R heteromer. Biochemical and Biophysical Research Communications, 2010, 394, 988-992.	2.1	25
38	Voltageâ€dependence of the human dopamine D ₂ receptor. Synapse, 2008, 62, 476-480.	1.2	29
39	Electrophysiology-based analysis of human histamine H4 receptor pharmacology using GIRK channel coupling in Xenopus oocytes. European Journal of Pharmacology, 2008, 591, 52-58.	3.5	3
40	Differential voltage-sensitivity of D2-like dopamine receptors. Biochemical and Biophysical Research Communications, 2008, 374, 496-501.	2.1	20
41	Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. Biochemical and Biophysical Research Communications, 2008, 377, 1216-1221.	2.1	23
42	The human histamine H3 receptor couples to GIRK channels in Xenopus oocytes. European Journal of Pharmacology, 2007, 567, 206-210.	3.5	11
43	A truncated Kv1.1 protein in the brain of the megencephaly mouse: expression and interaction. BMC Neuroscience, 2005, 6, 65.	1.9	25