Zine-Eddine Kherraf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homozygous mutations in <i>CCDC34</i> cause male infertility with oligoasthenoteratozoospermia in humans and mice. Journal of Medical Genetics, 2022, 59, 710-718.	1.5	20
2	From azoospermia to macrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene. Asian Journal of Andrology, 2022, 24, 243.	0.8	4
3	Identification and Characterization of an Exonic Duplication in PALB2 in a Man with Synchronous Breast and Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 667.	1.8	2
4	Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. American Journal of Human Genetics, 2022, 109, 508-517.	2.6	41
5	Combined Use of Whole Exome Sequencing and CRISPR/Cas9 to Study the Etiology of Non-Obstructive Azoospermia: Demonstration of the Dispensable Role of the Testis-Specific Genes C1orf185 and CCT6B. Cells, 2022, 11, 118.	1.8	1
6	A recurrent <i>ZP1</i> variant is responsible for oocyte maturation defect with degenerated oocytes in infertile females. Clinical Genetics, 2022, 102, 22-29.	1.0	5
7	Oligogenic heterozygous inheritance of sperm abnormalities in mouse. ELife, 2022, 11, .	2.8	12
8	The genetic architecture of morphological abnormalities of the sperm tail. Human Genetics, 2021, 140, 21-42.	1.8	130
9	Defect in the nuclear pore membrane glycoprotein 210-like gene is associated with extreme uncondensed sperm nuclear chromatin and male infertility: a case report. Human Reproduction, 2021, 36, 693-701.	0.4	20
10	Genetic analyses of a large cohort of infertile patients with globozoospermia, DPY19L2 still the main actor, GGN confirmed as a guest player. Human Genetics, 2021, 140, 43-57.	1.8	24
11	Identification and Characterization of the Most Common Genetic Variant Responsible for Acephalic Spermatozoa Syndrome in Men Originating from North Africa. International Journal of Molecular Sciences, 2021, 22, 2187.	1.8	5
12	A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet–Biedl syndrome. Human Genetics, 2021, 140, 1031-1043.	1.8	20
13	Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Human Genetics, 2021, 140, 1367-1377.	1.8	23
14	Leucine zipper transcription factor-like 1 (LZTFL1), an intraflagellar transporter protein 27 (IFT27) associated protein, is required for normal sperm function and male fertility. Developmental Biology, 2021, 477, 164-176.	0.9	11
15	Homozygous mutations in <i>SPEF2</i> induce multiple morphological abnormalities of the sperm flagella and male infertility. Journal of Medical Genetics, 2020, 57, 31-37.	1.5	57
16	Biallelic mutations in <i>CFAP65</i> cause male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. Journal of Medical Genetics, 2020, 57, 89-95.	1.5	55
17	Genetics of teratozoospermia: Back to the head. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101473.	2.2	32
18	Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. American Journal of Human Genetics, 2020, 107, 330-341.	2.6	111

#	Article	IF	CITATIONS
19	Biallelic variants in <i>MAATS1</i> encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. Journal of Medical Genetics, 2020, 57, 708-716.	1.5	43
20	The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. American Journal of Physiology - Cell Physiology, 2020, 318, C1092-C1106.	2.1	20
21	Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous <i>QRICH2</i> mutations. Clinical Genetics, 2019, 96, 394-401.	1.0	30
22	CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Human Reproduction, 2019, 34, 2071-2079.	0.4	43
23	Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. American Journal of Human Genetics, 2019, 105, 1148-1167.	2.6	44
24	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	2.6	113
25	Bi-allelic Mutations in TTC21A Induce Asthenoteratospermia in Humans and Mice. American Journal of Human Genetics, 2019, 104, 738-748.	2.6	103
26	Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Molecular and Cellular Endocrinology, 2018, 468, 70-80.	1.6	24
27	<scp>PATL</scp> 2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Molecular Medicine, 2018, 10, .	3.3	53
28	Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nature Communications, 2018, 9, 686.	5.8	173
29	Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Human Reproduction, 2018, 33, 1973-1984.	0.4	93
30	A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. American Journal of Human Genetics, 2018, 103, 400-412.	2.6	81
31	<scp>SPINK</scp> 2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inAhomozygotes. EMBO Molecular Medicine, 2017, 9, 1132-1149.	3.3	95
32	Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new <i>DNAH1</i> mutations. Human Reproduction, 2016, 31, 2872-2880.	0.4	96
33	Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Human Molecular Genetics, 2016, 25, 878-891.	1.4	112