
Neil Macdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changing climate both increases and decreases European river floods. Nature, 2019, 573, 108-111.	13.7	639
2	Changing climate shifts timing of European floods. Science, 2017, 357, 588-590.	6.0	584
3	Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 2014, 18, 2735-2772.	1.9	423
4	Current European flood-rich period exceptional compared with past 500Âyears. Nature, 2020, 583, 560-566.	13.7	154
5	Flood stratigraphies in lake sediments: A review. Earth-Science Reviews, 2014, 135, 17-37.	4.0	117
6	Documentary evidence of past floods in Europe and their utility in flood frequency estimation. Journal of Hydrology, 2014, 517, 963-973.	2.3	116
7	European floods during the winter 1783/1784: scenarios of an extreme event during the â€`Little Ice Age'. Theoretical and Applied Climatology, 2010, 100, 163-189.	1.3	102
8	Identification of coherent flood regions across Europe by using the longest streamflow records. Journal of Hydrology, 2015, 528, 341-360.	2.3	79
9	Interpreting historical, botanical, and geological evidence to aid preparations for future floods. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1318.	2.8	77
10	Making space for unruly water: Sustainable drainage systems and the disciplining of surface runoff. Geoforum, 2007, 38, 534-544.	1.4	60
11	Reassessment of flood frequency using historical information for the River Ouse at York, UK (1200–2000). Hydrological Sciences Journal, 2010, 55, 1152-1162.	1.2	53
12	Natural Flood Management: Beyond the evidence debate. Area, 2019, 51, 743-751.	1.0	51
13	Historical and pooled flood frequency analysis for the River Tay at Perth, Scotland. Area, 2006, 38, 34-46.	1.0	50
14	Toward integrated historical climate research: the example of Atmospheric Circulation Reconstructions over the Earth. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 164-174.	3.6	50
15	Current understanding of hydrological processes on common urban surfaces. Progress in Physical Geography, 2016, 40, 699-713.	1.4	48
16	AÂ305-year continuous monthly rainfall series for the island ofÂIreland (1711–2016). Climate of the Past, 2018, 14, 413-440.	1.3	46
17	Longâ€ŧerm variability and trends in meteorological droughts in Western Europe (1851–2018). International Journal of Climatology, 2021, 41, E690.	1.5	43
18	High-magnitude flooding across Britain since AD 1750. Hydrology and Earth System Sciences, 2017, 21, 1631-1650.	1.9	42

NEIL MACDONALD

#	Article	IF	CITATIONS
19	Use of multi-proxy flood records to improve estimates of flood risk: Lower River Tay, Scotland. Catena, 2006, 66, 107-119.	2.2	40
20	Severity, duration and frequency of drought in SE England from 1697 to 2011. Climatic Change, 2013, 121, 673-687.	1.7	40
21	The significance of Gilbert F. White's 1945 paper â€~Human adjustment to floods' in the development of risk and hazard management. Progress in Physical Geography, 2012, 36, 125-133.	1.4	34
22	Trends in flood seasonality of the River Ouse (Northern England) from archive and instrumental sources since AD 1600. Climatic Change, 2012, 110, 901-923.	1.7	33
23	A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proceedings of the International Association of Hydrological Sciences, 0, 370, 89-95.	1.0	32
24	Multi entury trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records. International Journal of Climatology, 2020, 40, 610-619.	1.5	31
25	Reassessing flood frequency for the River Trent through the inclusion of historical flood information since ad 1320. Hydrology Research, 2013, 44, 215-233.	1.1	30
26	Neil MacDonald on Epigraphic Records: A Valuable Resource in Reassessing Flood Risk and Long-Term Climate Variability. Environmental History, 2007, 12, 136-140.	0.1	28
27	Spatial and temporal variability of flood seasonality in Wales. Hydrological Processes, 2010, 24, 1806-1820.	1.1	27
28	Reassessing flood frequency for the Sussex Ouse, Lewes: the inclusion of historical flood information since AD 1650. Natural Hazards and Earth System Sciences, 2014, 14, 2817-2828.	1.5	26
29	Hydrological thresholds and basin control over paleoflood records in lakes. Geology, 2016, 44, 43-46.	2.0	26
30	Interactions between apparently â€~primary' weather-driven hazards and their cost. Environmental Research Letters, 2015, 10, 104003.	2.2	22
31	Using lake sediment archives to improve understanding of flood magnitude and frequency: Recent extreme flooding in northwest UK. Earth Surface Processes and Landforms, 2019, 44, 2366-2376.	1.2	22
32	Getting it wrong first time: building an interdisciplinary research relationship. Area, 2007, 39, 490-498.	1.0	20
33	Engineers and planners: sustainable water management alliances. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2011, 164, 239-247.	0.4	20
34	Quantifying system disturbance and recovery from historical mining-derived metal contamination at Brotherswater, northwest England. Journal of Paleolimnology, 2016, 56, 205-221.	0.8	19
35	Dealing with the deluge of historical weather data: the example of the <scp>TEMPEST</scp> database. Geo: Geography and Environment, 2017, 4, e00039.	0.5	18
36	Developing a large-scale dataset of flood fatalities for territories in the Euro-Mediterranean region, FFEM-DB. Scientific Data, 2022, 9, 166.	2.4	18

NEIL MACDONALD

#	Article	IF	CITATIONS
37	The co-evolution of historical source materials in the geophysical, hydrological and meteorological sciences. Progress in Physical Geography, 2018, 42, 61-82.	1.4	16
38	Revision and extension of the composite Carlisle rainfall record, northwest England: 1757-2012. International Journal of Climatology, 2015, 35, 3593-3607.	1.5	15
39	The application of a drought reconstruction in water resource management. Hydrology Research, 2016, 47, 646-659.	1.1	14
40	Examining the social consequences of extreme weather: the outcomes of the 1946/1947 winter in upland Wales, UK. Climatic Change, 2012, 113, 35-53.	1.7	12
41	A pre-calibration approach to select optimum inputs for hydrological models in data-scarce regions. Hydrology and Earth System Sciences, 2016, 20, 4391-4407.	1.9	12
42	Quantifying the hydrological implications of pre- and post-installation willowed engineered log jams in the Pennine Uplands, NW England. Journal of Hydrology, 2021, 603, 126855.	2.3	11
43	Archiving memories of changing flood risk: Interdisciplinary explorations around knowledge for resilience. Journal of Arts and Communities, 2012, 4, 46-74.	0.2	11
44	Historical weather accounts from Wales: an assessment of their potential for reconstructing climate. Weather, 2010, 65, 72-81.	0.6	10
45	Variability of maximum and mean average temperature across Libya (1945–2009). Theoretical and Applied Climatology, 2014, 117, 549-563.	1.3	10
46	Dry weather fears of Britain's early â€~industrial' canal network. Regional Environmental Change, 2019, 19, 2325-2337.	1.4	10
47	Convergent human and climate forcing of late-Holocene flooding in Northwest England. Global and Planetary Change, 2019, 182, 102998.	1.6	9
48	Reconstruction of long-term precipitation records for Edinburgh: an examination of the mechanisms responsible for temporal variability in precipitation. Theoretical and Applied Climatology, 2008, 92, 141-154.	1.3	8
49	Demystifying academics to enhance university–business collaborations in environmental science. Geoscience Communication, 2019, 2, 1-23.	0.5	8
50	Reconstructed annual precipitation series for Scotland (1861–Â1991): Spatial and temporal variations, and links to the atmospheric circulation. Scottish Geographical Journal, 2006, 122, 1-18.	0.4	7
51	Evaluating the utility of qualitative personal diaries in precipitation reconstruction in the eighteenth and nineteenth centuries. Climate of the Past, 2021, 17, 133-149.	1.3	7
52	â€~A dreadful phenomenon described and improved': Reverend John Fletcher's account of the Buildwas earthquake of 1773. Journal of Historical Geography, 2019, 64, 72-84.	0.3	6
53	Variability of minimum temperature across Libya (1945–2009). International Journal of Climatology, 2013, 33, 641-653.	1.5	5
54	Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice. Hydrology and Earth System Sciences, 2021, 25, 6239-6259.	1.9	5

NEIL MACDONALD

#	Article	IF	CITATIONS
55	Assessing the performance of a physically based hydrological model using a proxy atchment approach in an agricultural environment. Hydrological Processes, 2019, 33, 3119-3137.	1.1	4
56	Reassessing long-term drought risk and societal impacts in Shenyang, Liaoning Province, north-east China (1200–2015). Climate of the Past, 2020, 16, 1917-1935.	1.3	4
57	The inclusion of sustainable drainage systems in flood management in the post-industrial city: A case study of Glasgow. Scottish Geographical Journal, 2006, 122, 233-246.	0.4	1
58	Editorial: Historical and palaeofloods in Earth's history. Hydrology Research, 2013, 44, 199-201.	1.1	1
59	Simulated eventâ€scale flow and sediment generation responses to agricultural land cover change in lowland UK catchments. Hydrological Processes, 0, , .	1.1	1
60	The development of early reservoirs to supply water to arterial canals in England and Wales. Landscape History, 2021, 42, 79-98.	0.1	1
61	Fundamentals of fluvial geomorphology - by Ro Charlton. Area, 2009, 41, 225-225.	1.0	Ο
62	Mountains: Sources of Water, Sources of Knowledge. Mountain Research and Development, 2009, 29, 191.	0.4	0