
Kenichi Hamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of poloxamer additives on strength, injectability, and shape stability of beta-tricalcium phosphate cement modified using ball-milling. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105182.	3.1	2
2	Effects of zirconia additives on β-tricalcium-phosphate cement for high strength and high injectability. Ceramics International, 2021, 47, 1882-1890.	4.8	8
3	Influence of insertion depth on stress distribution in orthodontic miniscrew and the surrounding bone by finite element analysis. Dental Materials Journal, 2021, 40, 1270-1276.	1.8	4
4	Volume magnetic susceptibility design and hardness of Au–Ta alloys and Au–Nb alloys for MRI-compatible biomedical applications. Biomedical Physics and Engineering Express, 2017, 3, 015025.	1.2	6
5	Effects of powder-to-liquid ratio on properties of β-tricalcium-phosphate cements modified using high-energy ball-milling. Dental Materials Journal, 2017, 36, 590-599.	1.8	5
6	Application of porous titanium in prosthesis production using a moldless process: Evaluation of physical and mechanical properties with various particle sizes, shapes, and mixing ratios. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 581-589.	3.1	8
7	Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 77-86.	3.1	15
8	Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 151-160.	3.1	45
9	Magnetic susceptibility and hardness of Au–xPt–yNb alloys for biomedical applications. Acta Biomaterialia, 2013, 9, 8449-8453.	8.3	11
10	Reinforcement of bond strength of self-etching orthodontic adhesive. Angle Orthodontist, 2012, 82, 30-35.	2.4	1
11	Antibacterial activity of composite resin with glass-ionomer filler particles. Dental Materials Journal, 2010, 29, 193-198.	1.8	116
12	Enamel bonding of self-etching and phosphoric acid-etching orthodontic adhesives in simulated clinical conditions: Debonding force and enamel surface. Dental Materials Journal, 2009, 28, 419-425.	1.8	31
13	Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution. Bio-Medical Materials and Engineering, 2009, 19, 193-204.	0.6	1
14	Susceptibility to delayed fracture of Ni–Ti superelastic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 91-97.	5.6	51
15	Shape Recovery of Shape Memory Alloy Fiber Embedded Resin Matrix Smart Composite after Crack Repair. Dental Materials Journal, 2003, 22, 160-167.	1.8	24
16	Hydrothermal modification of titanium surface in calcium solutions. Biomaterials, 2002, 23, 2265-2272.	11.4	117
17	Degradation and fracture of Ni–Ti superelastic wire in an oral cavity. Biomaterials, 2001, 22, 2257-2262.	11.4	108