Anna L Blobaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of VU6019650 : A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M ₅ Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. Journal of Medicinal Chemistry, 2022, 65, 6273-6286.	6.4	8
2	Discovery and optimization of a novel CNS penetrant series of mGlu4 PAMs based on a 1,4-thiazepane core with in vivo efficacy in a preclinical Parkinsonian model. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127838.	2.2	3
3	Discovery of a novel class of heteroaryl-pyrrolidinones as positive allosteric modulators of the muscarinic acetylcholine receptor M1. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128193.	2.2	2
4	Discovery and Optimization of a Novel Series of Competitive and Central Nervous System-Penetrant Protease-Activated Receptor 4 (PAR4) Inhibitors. ACS Chemical Neuroscience, 2021, 12, 4524-4534.	3.5	2
5	Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Molecular Psychiatry, 2020, 25, 2786-2799.	7.9	28
6	Discovery of VU6015929: A Selective Discoidin Domain Receptor 1/2 (DDR1/2) Inhibitor to Explore the Role of DDR1 in Antifibrotic Therapy. ACS Medicinal Chemistry Letters, 2020, 11, 29-33.	2.8	20
7	Synthesis and SAR of a series of mGlu7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127529.	2.2	5
8	Discovery, synthesis and characterization of a series of 7-aryl-imidazo[1,2-a]pyridine-3-ylquinolines as activin-like kinase (ALK) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127418.	2.2	6
9	Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu ₇ Positive Allosteric Modulator Tool Compound. ACS Medicinal Chemistry Letters, 2020, 11, 1773-1779.	2.8	8
10	Further exploration of an N-aryl phenoxyethoxy pyridinone-based series of mGlu3 NAMs: Challenging SAR, enantiospecific activity and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2670-2674.	2.2	0
11	Challenges in the Discovery and Optimization of mGlu2/4 Heterodimer Positive Allosteric Modulators. Letters in Drug Design and Discovery, 2019, 16, 1387-1394.	0.7	8
12	Structure-Activity Relationships, Pharmacokinetics, and Pharmacodynamics of the Kir6.2/SUR1-Specific Channel Opener VU0071063. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 350-359.	2.5	13
13	Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1211-1214.	2.2	14
14	Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 47-50.	2.2	5
15	Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu ₇ Negative Allosteric Modulator (NAM) in Vivo Tool Compound: <i>N</i> -(2-(1 <i>H</i> -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamid (VU6012962), Journal of Medicinal Chemistry, 2019, 62, 1690-1695.	le ^{6.4}	20
16	The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 342-346.	2.2	6
17	Discovery of VU2957 (Valiglurax): An mClu4 Positive Allosteric Modulator Evaluated as a Preclinical Candidate for the Treatment of Parkinson's Disease. ACS Medicinal Chemistry Letters, 2019, 10, 255-260.	2.8	17
18	Discovery, Structure–Activity Relationship, and Biological Characterization of a Novel Series of 6-((1 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridin-3-yl)amino)-benzo[<i>d</i>]isothiazole-3-carboxamides as Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 4 (mGlu ₄). Journal of Medicinal Chemistry, 2019, 62, 342-358.	6.4	16

Anna L Blobaum

#	Article	IF	CITATIONS
19	Discovery of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1679-1685.	2.2	2
20	VU6007477, a Novel M1 PAM Based on a Pyrrolo[2,3-b]pyridine Carboxamide Core Devoid of Cholinergic Adverse Events. ACS Medicinal Chemistry Letters, 2018, 9, 917-922.	2.8	11
21	Discovery and characterization of N-(1,3-dialkyl-1H-indazol-6-yl)-1H-pyrazolo[4,3-b]pyridin-3-amine scaffold as mGlu4 positive allosteric modulators that mitigate CYP1A2 induction liability. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2641-2646.	2.2	9
22	The discovery of VU0486846: steep SAR from a series of M1 PAMs based on a novel benzomorpholine core. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2175-2179.	2.2	10
23	Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5- <i>d</i>]pyrimidine-2,4(1 <i>H</i> ,3 <i>H Core, Journal of Medicinal Chemistry, 2017, 60, 1611-1616.</i>	< <mark>6</mark> 4)-dione	2 ¹⁰
24	Diverse Effects on M ₁ Signaling and Adverse Effect Liability within a Series of M ₁ Ago-PAMs. ACS Chemical Neuroscience, 2017, 8, 866-883.	3.5	44
25	Contributions of Protease-Activated Receptors PAR1 and PAR4 to Thrombin-Induced GPIIbIIIa Activation in Human Platelets. Molecular Pharmacology, 2017, 91, 39-47.	2.3	29
26	Discovery of VU0467485/AZ13713945: An M ₄ PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2017, 8, 233-238.	2.8	43
27	Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu ₅ -Negative Allosteric Modulator VU0424238 (Auglurant). Drug Metabolism and Disposition, 2017, 45, 1245-1259.	3.3	22
28	Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4858-4866.	2.2	8
29	Discovery of VU6005649, a CNS Penetrant mGlu _{7/8} Receptor PAM Derived from a Series of Pyrazolo[1,5- <i>a</i>]pyrimidines. ACS Medicinal Chemistry Letters, 2017, 8, 1110-1115.	2.8	28
30	Design and Synthesis of <i>N</i> -Aryl Phenoxyethoxy Pyridinones as Highly Selective and CNS Penetrant mGlu ₃ NAMs. ACS Medicinal Chemistry Letters, 2017, 8, 925-930.	2.8	38
31	mGlu ₇ potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Science Translational Medicine, 2017, 9, .	12.4	55
32	Design and Synthesis of mGlu ₂ NAMs with Improved Potency and CNS Penetration Based on a Truncated Picolinamide Core. ACS Medicinal Chemistry Letters, 2017, 8, 919-924.	2.8	33
33	VU6010608, a Novel mGlu ₇ NAM from a Series of <i>N</i> -(2-(1 <i>H</i> -1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Medicinal Chemistry Letters, 2017, 8, 1326-1330.	2.8	18
34	Discovery of 3-aminopicolinamides as metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulator warheads engendering CNS exposure and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2915-2919.	2.2	3
35	Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3822-3825.	2.2	11
36	Optimization of the choline transporter (CHT) inhibitor ML352: Development of VU6001221, an improved in vivo tool compound. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4637-4640.	2.2	3

Anna L Blobaum

#	Article	IF	CITATIONS
37	Discovery, characterization and biological evaluation of a novel (R)-4,4-difluoropiperidine scaffold as dopamine receptor 4 (D 4 R) antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5757-5764.	2.2	12
38	Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics. Biochemistry, 2016, 55, 348-359.	2.5	6
39	Action at a Distance. Journal of Biological Chemistry, 2015, 290, 12793-12803.	3.4	28
40	A Screen of Approved Drugs Identifies the Androgen Receptor Antagonist Flutamide and Its Pharmacologically Active Metabolite 2-Hydroxy-Flutamide as Heterotropic Activators of Cytochrome P450 3A In Vitro and In Vivo. Drug Metabolism and Disposition, 2015, 43, 1718-1726.	3.3	9
41	The 2â€2-Trifluoromethyl Analogue of Indomethacin Is a Potent and Selective COX-2 Inhibitor. ACS Medicinal Chemistry Letters, 2013, 4, 486-490.	2.8	60
42	Synthesis and evaluation of [¹²³ I]â€indomethacin derivatives as COXâ€2 targeted imaging agents. Journal of Labelled Compounds and Radiopharmaceuticals, 2009, 52, 387-393.	1.0	16
43	Structural and Functional Basis of Cyclooxygenase Inhibition. Journal of Medicinal Chemistry, 2007, 50, 1425-1441.	6.4	420
44	Molecular Determinants for the Selective Inhibition of Cyclooxygenase-2 by Lumiracoxib. Journal of Biological Chemistry, 2007, 282, 16379-16390.	3.4	40
45	MECHANISM-BASED INACTIVATION AND REVERSIBILITY: IS THERE A NEW TREND IN THE INACTIVATION OF CYTOCHROME P450 ENZYMES?. Drug Metabolism and Disposition, 2006, 34, 1-7.	3.3	35