Edward A Byers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348005/publications.pdf

Version: 2024-02-01

279798 345221 1,781 37 23 36 citations h-index g-index papers 45 45 45 2110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Balancing smart irrigation and hydropower investments for sustainable water conservation in the Indus basin. Environmental Science and Policy, 2022, 135, 147-161.	4.9	4
2	The timing of unprecedented hydrological drought under climate change. Nature Communications, 2022, 13 , .	12.8	77
3	Transboundary cooperation a potential route to sustainable development in the Indus basin. Nature Sustainability, 2021, 4, 331-339.	23.7	47
4	Global scenarios of household access to modern energy services under climate mitigation policy. Nature Energy, 2021, 6, 824-833.	39.5	29
5	Future cooling gap in shared socioeconomic pathways. Environmental Research Letters, 2021, 16, 094053.	5.2	19
6	Hydropower and seasonal pumped hydropower storage in the Indus basin:pros and cons. Journal of Energy Storage, 2021, 41, 102916.	8.1	21
7	Energy systems in scenarios at net-zero CO2 emissions. Nature Communications, 2021, 12, 6096.	12.8	91
8	Global scenarios of residential heating and cooling energy demand and CO2 emissions. Climatic Change, 2021, 168, 1.	3.6	28
9	Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 2020, 5, 794-802.	39.5	180
10	Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nature Communications, 2020, 11, 2239.	12.8	53
11	The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations. Geoscientific Model Development, 2020, 13, 1095-1121.	3.6	31
12	Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 2020, 11, 947.	12.8	121
13	Satellite Observations Reveal Inequalities in the Progress and Effectiveness of Recent Electrification in Sub-Saharan Africa. One Earth, 2020, 2, 364-379.	6.8	40
14	Using the jet stream for sustainable airship and balloon transportation of cargo and hydrogen. Energy Conversion and Management: X, 2019, 3, 100016.	1.6	5
15	A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Scientific Data, 2019, 6, 110.	5.3	65
16	Co-designing Indus Water-Energy-Land Futures. One Earth, 2019, 1, 185-194.	6.8	54
17	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	2.7	24
18	Improving the SDG energy poverty targets: Residential cooling needs in the Global South. Energy and Buildings, 2019, 186, 405-415.	6.7	93

#	Article	IF	CITATIONS
19	Electricity systems capacity expansion under cooling water availability constraints. IET Energy Systems Integration, 2019, 1, 23-33.	1.8	6
20	Reducing sea level rise with submerged barriers and dams in Greenland. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 779-794.	2.1	17
21	Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources. Energy and Environmental Science, 2019, 12, 3164-3181.	30.8	38
22	Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 2019, 14, 014009.	5.2	48
23	Technical potential and cost estimates for seawater air conditioning. Energy, 2019, 166, 979-988.	8.8	30
24	Dams with head increaser effect: Harnessing potential and kinetic power from rivers with large head and flow variation. Energy Conversion and Management, 2018, 157, 549-561.	9.2	12
25	A Continentalâ€Scale Hydroeconomic Model for Integrating Waterâ€Energyâ€Land Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	4.2	57
26	Air quality–carbon–water synergies and trade-offs in China's natural gas industry. Nature Sustainability, 2018, 1, 505-511.	23.7	49
27	Comparison between seasonal pumped-storage and conventional reservoir dams from the water, energy and land nexus perspective. Energy Conversion and Management, 2018, 166, 385-401.	9.2	70
28	Quantifying the potential for reservoirs to secure future surface water yields in the world's largest river basins. Environmental Research Letters, 2018, 13, 044026.	5.2	20
29	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	5. 2	162
30	Multiâ€model and multiâ€scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth's Future, 2017, 5, 823-852.	6.3	50
31	Water and climate risks to power generation with carbon capture and storage. Environmental Research Letters, 2016, 11, 024011.	5. 2	39
32	Cooling water for Britain's future electricity supply. Proceedings of Institution of Civil Engineers: Energy, 2015, 168, 188-204.	0.6	7
33	UK nuclear and fossil fuel energy infrastructure climate risks. Infrastructure Asset Management, 2015, 2, 120-130.	1.6	3
34	A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050. Energy, 2015, 88, 849-862.	8.8	21
35	Tools for tackling the water-energy-food nexus. Change and Adaptation in Socio-Ecological Systems, 2015, 2, .	1.5	5
36	Electricity generation and cooling water use: UK pathways to 2050. Global Environmental Change, 2014, 25, 16-30.	7.8	151

ARTICLE IF CITATIONS

37 Quantifying interdependencies: the energy–transport and water–energy nexus. , 0, , 227-240. O