Elena Zucchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734799/publications.pdf Version: 2024-02-01

FLENA ZUCCHINI

#	Article	IF	CITATIONS
1	Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports, 2017, 7, 40332.	3.3	116
2	Conformable polyimide-based μECoGs: Bringing the electrodes closer to the signal source. Biomaterials, 2020, 255, 120178.	11.4	58
3	Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Advanced Healthcare Materials, 2019, 8, e1900765.	7.6	51
4	In Vivo Dopamine Detection and Single Unit Recordings Using Intracortical Glassy Carbon Microelectrode Arrays. MRS Advances, 2018, 3, 1629-1634.	0.9	31
5	pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Frontiers in Neuroscience, 2016, 10, 151.	2.8	29
6	Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. Journal of Micromechanics and Microengineering, 2018, 28, 065009.	2.6	27
7	On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Biomaterials, 2022, 281, 121372.	11.4	27
8	Single walled carbon nanohorns composite for neural sensing and stimulation. Sensors and Actuators B: Chemical, 2018, 271, 280-288.	7.8	26
9	Incorporation of Silicon Carbide and Diamond‣ike Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thinâ€Film Glassy Carbon Electrocorticography Arrays. Advanced Biology, 2018, 2, 1700081.	3.0	24
10	Glassy Carbon Electrocorticography Electrodes on Ultra-Thin and Finger-Like Polyimide Substrate: Performance Evaluation Based on Different Electrode Diameters. Materials, 2018, 11, 2486.	2.9	23
11	Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats. Advanced Materials Technologies, 2020, 5, 1900713.	5.8	21
12	Achieving Ultra-Conformability With Polyimide-Based ECoG Arrays. , 2018, 2018, 4464-4467.		8
13	A Novel Biasing Scheme of Electrolyteâ€Gated Organic Transistors for Safe In Vivo Amplification of Electrophysiological Signals. Advanced Materials Interfaces, 2022, 9, .	3.7	7
14	Prediction of Speech Onset by Micro-Electrocorticography of the Human Brain. International Journal of Neural Systems, 2021, 31, 2150025.	5.2	6
15	Improved long-term stability of thin-film glassy carbon electrodes through the use of silicon carbide and amorphous carbon. , 2017, , .		3
16	Can Crosstalk Compromise the Recording of High-Frequency Neural Signals?. , 2019, , .		3
17	Flexible Bioelectronics: Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats (Adv. Mater. Technol. 2/2020). Advanced Materials Technologies, 2020, 5, 2070009.	5.8	0