Sirilak Sattayasamitsathit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. Journal of the American Chemical Society, 2011, 133, 11862-11864.	13.7	492
2	Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano, 2013, 7, 9232-9240.	14.6	386
3	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	14.6	371
4	Magnetically Powered Flexible Metal Nanowire Motors. Journal of the American Chemical Society, 2010, 132, 14403-14405.	13.7	362
5	Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano, 2014, 8, 11118-11125.	14.6	316
6	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	9.1	300
7	Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society, 2009, 131, 12082-12083.	13.7	264
8	Self-Propelled Activated Carbon Janus Micromotors for Efficient Water Purification. Small, 2015, 11, 499-506.	10.0	259
9	Rapid Delivery of Drug Carriers Propelled and Navigated by Catalytic Nanoshuttles. Small, 2010, 6, 2741-2747.	10.0	245
10	Ultrasoundâ€Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small, 2014, 10, 4154-4159.	10.0	196
11	Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. Journal of the American Chemical Society, 2013, 135, 5336-5339.	13.7	194
12	Micromotorâ€Based High‥ielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie - International Edition, 2013, 52, 13276-13279.	13.8	184
13	Polymer-based tubular microbots: role of composition and preparation. Nanoscale, 2012, 4, 2447.	5.6	150
14	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	5.6	146
15	Propulsion of nanowire diodes. Chemical Communications, 2010, 46, 1623.	4.1	143
16	Nanomotor lithography. Nature Communications, 2014, 5, 5026.	12.8	141
17	Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6, 9415-9420.	5.6	138
18	Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir, 2014, 30, 5082-5087.	3.5	136

2

#	Article	IF	CITATIONS
19	Hybrid Nanomotor: A Catalytically/Magnetically Powered Adaptive Nanowire Swimmer. Small, 2011, 7, 2047-2051.	10.0	132
20	Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-In Boronic Acid Recognition for Isolating Sugars and Cells. Journal of the American Chemical Society, 2012, 134, 15217-15220.	13.7	125
21	Multifunctional Silverâ€Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Advanced Functional Materials, 2015, 25, 2147-2155.	14.9	117
22	Catalytically propelled micro nanomotors: how fast can they move?. Chemical Record, 2012, 12, 224-231.	5.8	100
23	Fully Loaded Micromotors for Combinatorial Delivery and Autonomous Release of Cargoes. Small, 2014, 10, 2830-2833.	10.0	81
24	Highly ordered multilayered 3D graphene decorated with metal nanoparticles. Journal of Materials Chemistry A, 2013, 1, 1639-1645.	10.3	76
25	Shape-Tailored Porous Gold Nanowires: From Nano Barbells to Nano Step-Cones. ACS Nano, 2007, 1, 403-408.	14.6	62
26	Fabrication of Nanoporous Copper Film for Electrochemical Detection of Glucose. Electroanalysis, 2009, 21, 2371-2377.	2.9	58
27	Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale, 2013, 5, 8909.	5.6	54
28	Micromotors to capture and destroy anthrax simulant spores. Analyst, The, 2015, 140, 1421-1427.	3.5	53
29	Multiplexed immunoassay based on micromotors and microscale tags. Lab on A Chip, 2014, 14, 3505.	6.0	49
30	Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes. Nanoscale, 2013, 5, 7849.	5.6	40
31	Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Advances, 2014, 4, 27565-27570.	3.6	40
32	Simplified Costâ€Effective Preparation of Highâ€Performance Ag–Pt Nanowire Motors. ChemPhysChem, 2010, 11, 2802-2805.	2.1	39
33	Highly ordered tailored three-dimensional hierarchical nano/microporous gold–carbon architectures. Journal of Materials Chemistry, 2012, 22, 11950.	6.7	33
34	Bismuth Film Electrode for Analysis of Tetracycline in Flow Injection System. Electroanalysis, 2007, 19, 502-505.	2.9	28
35	Self-propelled chemically-powered plant-tissue biomotors. Chemical Communications, 2013, 49, 7307.	4.1	23
36	Striped Alloy Nanowire Optical Reflectance Barcodes Prepared from a Single Plating Solution. Small, 2008, 4, 597-600.	10.0	22

3

#	Article	IF	CITATIONS
37	Highly dispersed Pt nanoparticle-modified 3D porous carbon: A metallized carbon electrode material. Electrochemistry Communications, 2011, 13, 856-860.	4.7	21
38	Orthogonal Identification of Gunshot Residue with Complementary Detection Principles of Voltammetry, Scanning Electron Microscopy, and Energy-Dispersive X-ray Spectroscopy: Sample, Screen, and Confirm. Analytical Chemistry, 2014, 86, 8031-8036.	6.5	21
39	Alloy Nanowires Bar Codes Based on Nondestructive X-ray Fluorescence Readout. Analytical Chemistry, 2007, 79, 7571-7575.	6.5	20
40	Polymer end-group mediated synthesis of well-defined catalytically active platinum nanoparticles. Journal of Materials Chemistry, 2011, 21, 15788.	6.7	14
41	Highâ€Power Lowâ€Cost Tissueâ€Based Biofuel Cell. Electroanalysis, 2013, 25, 838-844.	2.9	4
42	Improved oxygen reduction reaction activities with amino acid R group functionalized PEG at platinum surfaces. Journal of Materials Chemistry A, 2013, 1, 10267.	10.3	4
43	Materials Chemistry for Sustainability and Energy. Journal of Chemistry, 2014, 2014, 1-3.	1.9	1
44	A Green and Biocompatible Magnetically Powered Nickel–Flagella Nanomotor. Chemistry Letters, 2015, 44, 300-302.	1.3	1