Carmen C Sucharov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347817/publications.pdf

Version: 2024-02-01

236925 276875 1,776 58 25 41 citations h-index g-index papers 59 59 59 2445 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated analysis of miRNA–mRNA interaction in pediatric dilated cardiomyopathy. Pediatric Research, 2022, 92, 98-108.	2.3	12
2	Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise. Journal of Cardiovascular Development and Disease, 2022, 9, 37.	1.6	2
3	Circulating cyclic adenosine monophosphate concentrations in milrinone treated paediatric patients after congenital heart surgery. Cardiology in the Young, 2021, 31, 1393-1400.	0.8	1
4	Amniotic fluid microRNA profiles in twin-twin transfusion syndrome with and without severe recipient cardiomyopathy. American Journal of Obstetrics and Gynecology, 2021, 225, 439.e1-439.e10.	1.3	5
5	Serum circulating proteins from pediatric patients with dilated cardiomyopathy cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight, 2021, 6, .	5.0	7
6	Serum response factor deletion 5 regulates phospholamban phosphorylation and calcium uptake. Journal of Molecular and Cellular Cardiology, 2021, 159, 28-37.	1.9	1
7	Paracrine Factors in UremicÂCardiomyopathy. JACC Basic To Translational Science, 2020, 5, 167-168.	4.1	1
8	MicroRNA regulation postbleomycin due to the R213G extracellular superoxide dismutase variant is predicted to suppress inflammatory and immune pathways. Physiological Genomics, 2020, 52, 245-254.	2.3	1
9	Dysregulated micro-RNAs and long noncoding RNAs in cardiac development and pediatric heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1308-H1315.	3.2	10
10	Circulating microRNAs differentiate Kawasaki Disease from infectious febrile illnesses in childhood. Journal of Molecular and Cellular Cardiology, 2020, 146, 12-18.	1.9	16
11	Alteration of cardiolipin biosynthesis and remodeling in single right ventricle congenital heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H787-H800.	3.2	8
12	The Role of BCAT1 on Pediatric Dilated Cardiomyopathy. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1221-H1230.	3.2	15
14	Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Science Translational Medicine, 2019, 11, .	12.4	41
15	Redistribution of ECâ€SOD resolves bleomycinâ€induced inflammation <i>via</i> increased apoptosis of recruited alveolar macrophages. FASEB Journal, 2019, 33, 13465-13475.	0.5	14
16	Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic To Translational Science, 2019, 4, 147-157.	4.1	72
17	A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium. Journal of the American College of Cardiology, 2019, 73, 1173-1184.	2.8	18
18	CELF1 regulates gap junction integrity contributing to dilated cardiomyopathy. Non-coding RNA Investigation, 2018, 2, 10-10.	0.6	2

#	Article	IF	Citations
19	Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1059-1066.	2.8	14
20	Phosphodiesterase-5 Is Elevated in Failing Single Ventricle Myocardium and Affects Cardiomyocyte Remodeling In Vitro. Circulation: Heart Failure, 2018, 11, e004571.	3.9	32
21	Optimization of phenol-chloroform RNA extraction. MethodsX, 2018, 5, 599-608.	1.6	118
22	Acute isoproterenol leads to age-dependent arrhythmogenesis in guinea pigs. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1051-H1062.	3.2	8
23	R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways. Physiological Genomics, 2018, 50, 807-816.	2.3	9
24	A novel genetic marker of decreased inflammation and improved survival after acute myocardial infarction. Basic Research in Cardiology, 2018, 113, 38.	5.9	58
25	Improved Detection of Circulating miRNAs in Serum and Plasma Following Rapid Heat/Freeze Cycling. MicroRNA (Shariqah, United Arab Emirates), 2018, 7, 138-147.	1.2	15
26	Differential response to heart failure medications in children. Progress in Pediatric Cardiology, 2018, 49, 27-30.	0.4	9
27	Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H818-H826.	3.2	38
28	Molecular Changes in Children with Heart Failure Undergoing Left Ventricular Assist Device Therapy. Journal of Pediatrics, 2017, 182, 184-189.e1.	1.8	6
29	Fibrosis and Fibrotic Gene Expression in Pediatric and Adult Patients With Idiopathic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2017, 23, 314-324.	1.7	28
30	Fibrosis-Related Gene Expression in Single Ventricle Heart Disease. Journal of Pediatrics, 2017, 191, 82-90.e2.	1.8	14
31	Cardiac Adenylyl Cyclase and Phosphodiesterase Expression Profiles Vary by Age, Disease, and Chronic Phosphodiesterase Inhibitor Treatment. Journal of Cardiac Failure, 2017, 23, 72-80.	1.7	29
32	Myocardial microRNAs associated with reverse remodeling in human heart failure. JCI Insight, 2017, 2, e89169.	5.0	42
33	Midkine's Role in Cardiac Pathology. Journal of Cardiovascular Development and Disease, 2017, 4, 13.	1.6	13
34	Circulating miRNAs in Pediatric Pulmonary Hypertension Show Promise as Biomarkers of Vascular Function. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	16
35	Pediatric dilated cardiomyopathy hearts display a unique gene expression profile. JCI Insight, 2017, 2, .	5.0	46
36	Myocardial Response to Milrinone in Single Right Ventricle Heart Disease. Journal of Pediatrics, 2016, 174, 199-203.e5.	1.8	11

#	Article	IF	CITATIONS
37	Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA. Cell Reports, 2016, 16, 1366-1378.	6.4	70
38	Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. Journal of Heart and Lung Transplantation, 2015, 34, 724-733.	0.6	65
39	Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner. Biochemical and Biophysical Research Communications, 2015, 462, 131-137.	2.1	7
40	Age-Related Differences in Phosphodiesterase Activity and Effects of Chronic Phosphodiesterase Inhibition in Idiopathic Dilated Cardiomyopathy. Circulation: Heart Failure, 2015, 8, 57-63.	3.9	42
41	Micro-RNA Expression in Hypoplastic Left Heart Syndrome. Journal of Cardiac Failure, 2015, 21, 83-88.	1.7	40
42	Hypertrophy Inducing Factor In Pediatric Idiopathic Dilated Cardiomyopathy Serum. FASEB Journal, 2015, 29, 1047.4.	0.5	0
43	Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. European Heart Journal, 2014, 35, 33-41.	2.2	92
44	Dysregulation of cardiolipin biosynthesis in pediatric heart failure. Journal of Molecular and Cellular Cardiology, 2014, 74, 251-259.	1.9	41
45	miRNA expression in pediatric failing human heart. Journal of Molecular and Cellular Cardiology, 2013, 57, 43-46.	1.9	50
46	\hat{l}^2 -Adrenergic receptor antagonism in mice: a model for pediatric heart disease. Journal of Applied Physiology, 2013, 115, 979-987.	2.5	17
47	Overâ€expression of FXRG and miR‶ increases formation of RISC complexes in H9C2 cell line. FASEB Journal, 2013, 27, .	0.5	0
48	EXPRESSION OF CARDIOLIPIN BIOSYNTHESIS AND REMODELING ENZYMES IN ADULT HEART FAILURE. FASEB Journal, 2013, 27, 1085.12.	0.5	0
49	MicroRNA expression in heart failure. FASEB Journal, 2012, 26, 336.3.	0.5	0
50	β-Adrenergic Receptor Stimulation and Activation of Protein Kinase A Protect Against α1-Adrenergic–Mediated Phosphorylation of Protein Kinase D and Histone Deacetylase 5. Journal of Cardiac Failure, 2011, 17, 592-600.	1.7	31
51	Role of MicroRNAs in Cardiovascular Disease: Therapeutic Challenges and Potentials. Journal of Cardiovascular Pharmacology, 2010, 56, 444-453.	1.9	55
52	miRNA expression in the failing human heart: Functional correlates. Journal of Molecular and Cellular Cardiology, 2008, 45, 185-192.	1.9	216
53	YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5. Molecular Biology of the Cell, 2008, 19, 4141-4153.	2.1	59
54	\hat{I}^2 -adrenergic pathways in human heart failure. Expert Review of Cardiovascular Therapy, 2007, 5, 119-124.	1.5	19

#	Article	IF	CITATION
55	A \hat{I}^21 -adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1299-H1308.	3.2	77
56	Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. American Journal of Physiology - Cell Physiology, 2006, 291, C1029-C1037.	4.6	44
57	The Ku Protein Complex Interacts with YY1, Is Up-Regulated in Human Heart Failure, and Represses α Myosin Heavy-Chain Gene Expression. Molecular and Cellular Biology, 2004, 24, 8705-8715.	2.3	43
58	Yin Yang 1 Is Increased in Human Heart Failure and Represses the Activity of the Human \hat{l} ±-Myosin Heavy Chain Promoter. Journal of Biological Chemistry, 2003, 278, 31233-31239.	3.4	76