
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophobic immiscibility controls self-sorting or co-assembly of peptide amphiphiles. Chemical Communications, 2022, 58, 585-588.	2.2	6
2	A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials, 2022, 282, 121385.	5.7	4
3	Transdermal Delivery of Antigenic Protein Using Ionic Liquid-Based Nanocarriers for Tumor Immunotherapy. ACS Applied Bio Materials, 2022, 5, 2586-2597.	2.3	11
4	Co-amorphous formation of piroxicam-citric acid to generate supersaturation and improve skin permeation. European Journal of Pharmaceutical Sciences, 2021, 158, 105667.	1.9	29
5	Extending the Half-Life of a Protein <i>in Vivo</i> by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjugate Chemistry, 2021, 32, 655-660.	1.8	6
6	pH-Responsive Self-Assembly of Designer Aromatic Peptide Amphiphiles and Enzymatic Post-Modification of Assembled Structures. International Journal of Molecular Sciences, 2021, 22, 3459.	1.8	8
7	Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS Applied Materials & Interfaces, 2021, 13, 19745-19755.	4.0	53
8	Biocompatible ionic liquids assisted transdermal co-delivery of antigenic protein and adjuvant for cancer immunotherapy. International Journal of Pharmaceutics, 2021, 601, 120582.	2.6	25
9	Favipiravir-Based Ionic Liquids as Potent Antiviral Drugs for Oral Delivery: Synthesis, Solubility, and Pharmacokinetic Evaluation. Molecular Pharmaceutics, 2021, 18, 3108-3115.	2.3	22
10	Lipid-Based Ionic-Liquid-Mediated Nanodispersions as Biocompatible Carriers for the Enhanced Transdermal Delivery of a Peptide Drug. ACS Applied Bio Materials, 2021, 4, 6256-6267.	2.3	21
11	Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Applied Materials & Interfaces, 2021, 13, 42461-42472.	4.0	42
12	Methotrexate-based ionic liquid as a potent anticancer drug for oral delivery: In vivo pharmacokinetics, biodistribution, and antitumor efficacy. International Journal of Pharmaceutics, 2021, 608, 121129.	2.6	15
13	Design of Swollen Lipidic Cubic Phase to Increase Transcutaneous Penetration of Biomacromolecules. ACS Applied Materials & Interfaces, 2021, 13, 54753-54761.	4.0	5
14	Transcutaneous Cancer Vaccine Using a Reverse Micellar Antigen Carrier. Molecular Pharmaceutics, 2020, 17, 645-655.	2.3	10
15	A Novel Binary Supercooled Liquid Formulation for Transdermal Drug Delivery. Biological and Pharmaceutical Bulletin, 2020, 43, 393-398.	0.6	9
16	lonic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. Journal of Molecular Liquids, 2020, 299, 112166.	2.3	53
17	Lipid based biocompatible ionic liquids: synthesis, characterization and biocompatibility evaluation. Chemical Communications, 2020, 56, 13756-13759.	2.2	25
18	Biocompatible Ionic Liquid Enhances Transdermal Antigen Peptide Delivery and Preventive Vaccination Effect. Molecular Pharmaceutics, 2020, 17, 3845-3856.	2.3	37

#	Article	IF	CITATIONS
19	Formation and potential application of micelles composed of biocompatible N-lauroyl-amino acid ionic liquids surfactant. Journal of Molecular Liquids, 2020, 320, 114424.	2.3	26
20	Effective Transcutaneous Delivery of Hyaluronic Acid Using an Easy-to-Prepare Reverse Micelle Formulation. Cosmetics, 2020, 7, 52.	1.5	4
21	Design and Characterization of Fatty Acid-Based Amino Acid Ester as a New "Green―Hydrophobic Ionic Liquid for Drug Delivery. ACS Sustainable Chemistry and Engineering, 2020, 8, 13660-13671.	3.2	39
22	Dual-Functionalizable Streptavidin–SpyCatcher-Fused Protein–Polymer Hydrogels as Scaffolds for Cell Culture. ACS Applied Bio Materials, 2020, 3, 7734-7742.	2.3	9
23	Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions. Polymer Journal, 2020, 52, 899-911.	1.3	11
24	Biocompatible Ionic Liquid Surfactant-Based Microemulsion as a Potential Carrier for Sparingly Soluble Drugs. ACS Sustainable Chemistry and Engineering, 2020, 8, 6263-6272.	3.2	66
25	Linear Polymerization of Protein by Sterically Controlled Enzymatic Cross-Linking with a Tyrosine-Containing Peptide Loop. ACS Omega, 2020, 5, 5160-5169.	1.6	9
26	Solid-in-Oil Nanodispersions for Transcutaneous Immunotherapy of Japanese Cedar Pollinosis. Pharmaceutics, 2020, 12, 240.	2.0	1
27	Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. Journal of Bioscience and Bioengineering, 2020, 130, 416-423.	1.1	7
28	Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel. Scientific Reports, 2020, 10, 6710.	1.6	10
29	Ionic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug. Pharmaceutics, 2020, 12, 392.	2.0	55
30	Choline and amino acid based biocompatible ionic liquid mediated transdermal delivery of the sparingly soluble drug acyclovir. International Journal of Pharmaceutics, 2020, 582, 119335.	2.6	52
31	A nano-sized gel-in-oil suspension for transcutaneous protein delivery. International Journal of Pharmaceutics, 2019, 567, 118495.	2.6	8
32	Solid-in-oil nanodispersions for intranasal vaccination: Enhancement of mucosal and systemic immune responses. International Journal of Pharmaceutics, 2019, 572, 118777.	2.6	4
33	Transcutaneous Delivery of Immunomodulating Pollen Extract-Galactomannan Conjugate by Solid-in-Oil Nanodispersions for Pollinosis Immunotherapy. Pharmaceutics, 2019, 11, 563.	2.0	6
34	Ionic liquids with methotrexate moieties as a potential anticancer prodrug: Synthesis, characterization and solubility evaluation. Journal of Molecular Liquids, 2019, 278, 226-233.	2.3	71
35	Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control. Chemical Communications, 2019, 55, 640-643.	2.2	23
36	Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. Langmuir, 2019, 35, 2610-2618.	1.6	18

#	Article	IF	CITATIONS
37	Development of a novel ionic liquid–curcumin complex to enhance its solubility, stability, and activity. Chemical Communications, 2019, 55, 7737-7740.	2.2	49
38	Enzymatically Prepared Dual Functionalized Hydrogels with Gelatin and Heparin To Facilitate Cellular Attachment and Proliferation. ACS Applied Bio Materials, 2019, 2, 2600-2609.	2.3	11
39	In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations. International Journal of Pharmaceutics, 2019, 565, 219-226.	2.6	35
40	Complementary interaction with peptide amphiphiles guides size-controlled assembly of small molecules for intracellular delivery. Chemical Communications, 2019, 55, 6997-7000.	2.2	3
41	Enhanced Potential of Therapeutic Applications of Curcumin Using Solid-in-Water Nanodispersion Technique. Journal of Chemical Engineering of Japan, 2019, 52, 138-143.	0.3	5
42	Transcutaneous Codelivery of Tumor Antigen and Resiquimod in Solid-in-Oil Nanodispersions Promotes Antitumor Immunity. ACS Biomaterials Science and Engineering, 2019, 5, 2297-2306.	2.6	16
43	Synthesis and characterization of choline–fatty-acid-based ionic liquids: A new biocompatible surfactant. Journal of Colloid and Interface Science, 2019, 551, 72-80.	5.0	104
44	Enzymatic Cellâ€Surface Decoration with Proteins using Amphiphilic Lipidâ€Fused Peptide Substrates. Chemistry - A European Journal, 2019, 25, 7315-7321.	1.7	16
45	Effect of macromolecular crowding on the conformational behaviour of a porphyrin rotor. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 115-118.	2.0	2
46	Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids and Surfaces B: Biointerfaces, 2018, 164, 308-315.	2.5	34
47	Solid-in-Oil Peptide Nanocarriers for Transcutaneous Cancer Vaccine Delivery against Melanoma. Molecular Pharmaceutics, 2018, 15, 955-961.	2.3	30
48	Mechanistic investigation of transcutaneous protein delivery using solid-in-oil nanodispersion: A case study with phycocyanin. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 44-50.	2.0	11
49	Formation and Characterization of Caseinate–Chitosan Nanocomplexes for Encapsulation of Curcumin. Journal of Chemical Engineering of Japan, 2018, 51, 445-453.	0.3	4
50	Design of Lipid–Protein Conjugates Using Amphiphilic Peptide Substrates of Microbial Transglutaminase. ACS Applied Bio Materials, 2018, 1, 1823-1829.	2.3	14
51	Liquid Marbles as an Easyâ€ŧoâ€Handle Compartment for Cellâ€Free Synthesis and In Situ Immobilization of Recombinant Proteins. Biotechnology Journal, 2018, 13, 1800085.	1.8	12
52	Ionic-Liquid-Based Paclitaxel Preparation: A New Potential Formulation for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 2484-2488.	2.3	101
53	Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids. International Journal of Pharmaceutics, 2018, 546, 31-38.	2.6	73
54	Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. Biomacromolecules, 2017, 18, 422-430.	2.6	34

#	Article	IF	CITATIONS
55	Transcutaneous immunotherapy of pollinosis using solid-in-oil nanodispersions loaded with T cell epitope peptides. International Journal of Pharmaceutics, 2017, 529, 401-409.	2.6	10
56	Primary Amine-Clustered DNA Aptamer for DNA–Protein Conjugation Catalyzed by Microbial Transglutaminase. Bioconjugate Chemistry, 2017, 28, 2954-2961.	1.8	31
57	Solidâ€inâ€oil nanodispersions for transdermal drug delivery systems. Biotechnology Journal, 2016, 11, 1375-1385.	1.8	38
58	Biocatalytic Formation of Gold Nanoparticles Decorated with Functional Proteins inside Recombinant <i>Escherichia coli</i> Cells. Analytical Sciences, 2016, 32, 295-300.	0.8	3
59	BODIPY-labeled Fluorescent Aptamer Sensors for Turn-on Sensing of Interferon-gamma and Adenine Compounds on Cells. Analytical Sciences, 2016, 32, 543-547.	0.8	6
60	Enzymatically prepared redoxâ€responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation. Biotechnology Journal, 2016, 11, 1452-1460.	1.8	21
61	Diglycolic amic acid-modified E. coli as a biosorbent for the recovery of rare earth elements. Biochemical Engineering Journal, 2016, 113, 102-106.	1.8	21
62	Transcutaneous immunization against cancer using solid-in-oil nanodispersions. MedChemComm, 2015, 6, 1387-1392.	3.5	16
63	Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. MedChemComm, 2015, 6, 2124-2128.	3.5	49
64	Enzyme-mediated preparation of hydrogels composed of poly(ethylene glycol) and gelatin as cell culture platforms. RSC Advances, 2015, 5, 3070-3073.	1.7	13
65	Characterization of enzymatically gellable, phenolated linear poly(ethylene glycol) with different molecular weights for encapsulating living cells. Biochemical Engineering Journal, 2015, 93, 25-30.	1.8	14
66	Lock-Arm Supramolecular Ordering: A Molecular Construction Set for Cocrystallizing Organic Charge Transfer Complexes. Journal of the American Chemical Society, 2014, 136, 17224-17235.	6.6	66
67	The self-assembly and secondary structure of peptide amphiphiles determine the membrane permeation activity. RSC Advances, 2014, 4, 30654-30657.	1.7	5
68	A novel surface-coated nanocarrier for efficient encapsulation and delivery of camptothecin to cells. MedChemComm, 2014, 5, 1515-1519.	3.5	5
69	Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells. Chemical Communications, 2014, 50, 5895-5898.	2.2	57
70	Enzymatic Fabrication of Protein-Decorated Gold Nanoparticles by the Aid of Artificial Peptides with Gold-Binding Affinity. Langmuir, 2013, 29, 15596-15605.	1.6	16
71	Cross-linked conjugated polymer assemblies at the air–water interface through supramoleculer bundling. Dalton Transactions, 2013, 42, 15911.	1.6	2
72	Protein supramolecular complex formation by site-specific avidin–biotin interactions. Organic and Biomolecular Chemistry, 2013, 11, 914-922.	1.5	18

#	Article	IF	CITATIONS
73	Enzymatic preparation of streptavidin-immobilized hydrogel using a phenolated linear poly(ethylene) Tj ETQq1 I	0.784314 1.8	4 rgBT /Overld
74	Split Spy0128 as a Potent Scaffold for Protein Cross-Linking and Immobilization. Bioconjugate Chemistry, 2013, 24, 242-250.	1.8	13
75	ã€Original Contribution】 Preparation of Multiple Emulsions to Depress the Release of Drugs and Enhanced Permeation Effect in Transdermal Delivery. Membrane, 2013, 38, 92-96.	0.0	0
76	Effective transgene expression without toxicity by intraperitoneal administration of PEC-detachable polyplex micelles in mice with peritoneal dissemination. Journal of Controlled Release, 2012, 160, 542-551.	4.8	22
77	Dual blockade of phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways overcomes paclitaxel-resistance in colorectal cancer. Cancer Letters, 2011, 306, 151-160.	3.2	19
78	Impaired activities of cyclic adenosine monophosphateâ€responsive element binding protein, protein kinase A and calciumâ€independent phospholipase A2 are involved in deteriorated regeneration of cirrhotic liver after partial hepatectomy in rats. Hepatology Research, 2011, 41, 1110-1119.	1.8	4
79	Mechanically Interlocked Porphyrin Gears Propagating Two Different Rotational Frequencies. European Journal of Organic Chemistry, 2011, 2011, 1831-1836.	1.2	20
80	Alternating Arrays of Different Conjugated Polymers Utilizing a Synthetic Cross‣inker. Chemistry - A European Journal, 2011, 17, 1793-1797.	1.7	7
81	A Bevelâ€Gearâ€Shaped Rotor Bearing a Doubleâ€Decker Porphyrin Complex. Chemistry - A European Journal, 2010, 16, 8285-8290.	1.7	72
82	Supramolecular Assemblies of Polyaniline through Cooperative Bundling by a Palladium omplexâ€Appended Synthetic Cross‣inker. Chemistry - A European Journal, 2009, 15, 12627-12635.	1.7	12
83	Inside Cover: Supramolecular Assemblies of Polyaniline through Cooperative Bundling by a Palladium-Complex-Appended Synthetic Cross-Linker (Chem. Eur. J. 46/2009). Chemistry - A European Journal, 2009, 15, 12534-12534.	1.7	0
84	Unexpected Effects of Terminal Olefins on a Cooperative Recognition System that Implicate Olefin–Olefin Interactions. Angewandte Chemie - International Edition, 2009, 48, 6667-6670.	7.2	14
85	Toward the alignment of conjugated polymers into anisotropically-ordered structure. New Journal of Chemistry, 2007, 31, 790.	1.4	12
86	Olefin Metathesis of the Aligned Assemblies of Conjugated Polymers Constructed through Supramolecular Bundling. Journal of the American Chemical Society, 2006, 128, 8744-8745.	6.6	33
87	A Supramolecular Bundling Approach toward the Alignment of Conjugated Polymers. Angewandte Chemie - International Edition, 2006, 45, 1548-1553.	7.2	78
88	Cover Picture: A Supramolecular Bundling Approach toward the Alignment of Conjugated Polymers (Angew. Chem. Int. Ed. 10/2006). Angewandte Chemie - International Edition, 2006, 45, 1485-1485.	7.2	0
89	Allosteric function facilitates template assisted olefin metathesis. Chemical Communications, 2005, , 5742.	2.2	23