Shinya Hagihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347616/publications.pdf Version: 2024-02-01

SHINVA ΗΛΟΙΗΛΡΑ

#	Article	IF	CITATIONS
1	Development of 1,8-naphthalimide dyes for rapid imaging of subcellular compartments in plants. Chemical Communications, 2022, 58, 1685-1688.	4.1	5
2	Mitophagy in plants. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129916.	2.4	17
3	Autophagy Contributes to the Quality Control of Leaf Mitochondria. Plant and Cell Physiology, 2021, 62, 229-247.	3.1	37
4	Development of potent inhibitors for strigolactone receptor DWARF 14. Chemical Communications, 2020, 56, 14917-14919.	4.1	3
5	A super-sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair. Nucleic Acids Research, 2020, 48, e108-e108.	14.5	32
6	Chloroplast Autophagy and Ubiquitination Combine to Manage Oxidative Damage and Starvation Responses. Plant Physiology, 2020, 183, 1531-1544.	4.8	38
7	Isoform-selective regulation of mammalian cryptochromes. Nature Chemical Biology, 2020, 16, 676-685.	8.0	61
8	Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Science Advances, 2019, 5, eaau9060.	10.3	93
9	Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Current Opinion in Plant Biology, 2019, 47, 32-37.	7.1	9
10	The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. Journal of Experimental Botany, 2018, 69, 2281-2290.	4.8	10
11	Discovery of Shoot Branching Regulator Targeting Strigolactone Receptor DWARF14. ACS Central Science, 2018, 4, 230-234.	11.3	29
12	Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nature Chemical Biology, 2018, 14, 299-305.	8.0	107
13	Discovery of Plant Growth Stimulants by C–H Arylation of 2-Azahypoxanthine. Organic Letters, 2018, 20, 5684-5687.	4.6	15
14	Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants, 2018, 4, 453-459.	9.3	198
15	A Super Strong Engineered Auxin–TIR1 Pair. Plant and Cell Physiology, 2018, 59, 1538-1544.	3.1	25
16	Synthesis and Properties of 2â€2-OMe-RNAs Modified with Cross-Linkable 7-Deazaguanosine Derivatives. Journal of Organic Chemistry, 2018, 83, 8851-8862.	3.2	9
17	Harnessing synthetic chemistry to probe and hijack auxin signaling. New Phytologist, 2018, 220, 417-424.	7.3	12
18	Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology. Chemical Communications, 2017, 53, 9632-9635.	4.1	28

Shinya Hagihara

#	Article	IF	CITATIONS
19	Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turnâ€On DNA Probes. Chemistry - an Asian Journal, 2017, 12, 233-238.	3.3	19
20	Strigolactone receptors in <i>Striga hermonthica </i> . Plant Morphology, 2017, 29, 33-37.	0.1	0
21	High-throughput Assay for Quantification of Aminoglycoside–Ribosome Interaction. Chemistry Letters, 2016, 45, 1048-1050.	1.3	1
22	Aromatic C–H Borylation by Nickel Catalysis. Chemistry Letters, 2015, 44, 779-781.	1.3	60
23	Making Dimethylamino a Transformable Directing Group by Nickelâ€Catalyzed CN Borylation. Chemistry - A European Journal, 2015, 21, 16796-16800.	3.3	110
24	Probing strigolactone receptors in <i>Striga hermonthica</i> with fluorescence. Science, 2015, 349, 864-868.	12.6	230
25	Development of the crosslinking reactions to RNA triggered by oxidation. Chemical Communications, 2014, 50, 3951-3954.	4.1	12
26	The Crosslink Formation of 2′â€OMe Oligonucleotide Containing 2â€Aminoâ€6â€vinylpurine Protects mRNA from miRNAâ€Mediated Silencing. ChemBioChem, 2013, 14, 1427-1429.	2.6	20
27	Synthesis of peptide-conjugated light-driven molecular motors and evaluation of their DNA-binding properties. Molecular BioSystems, 2013, 9, 969.	2.9	14
28	Synthesis of 6-amino-2-vinylpurine derivatives for cross-linking and evaluation of the reactivity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6957-6961.	2.2	6
29	Production of truncated protein by the crosslink formation of mRNA with 2′-OMe oligoribonucleotide containing 2-amino-6-vinylpurine. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3870-3872.	2.2	20
30	Alteration of cross-linking selectivity with the 2′-OMe analogue of 2-amino-6-vinylpurine and evaluation of antisense effects. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6121-6124.	2.2	32
31	Hydrazinoanthrylboronic acids as exciton oupled circular dichroism (ECCD) probes for multivalent catechols, particularly epigallocatechin gallate. Chirality, 2009, 21, 826-835.	2.6	15
32	Systematic synthesis and inhibitory activity of haloacetamidyl oligosaccharide derivatives toward cytoplasmic peptide:N-glycanase. Glycoconjugate Journal, 2009, 26, 133-140.	2.7	10
33	Boronic Acid Converters for Reactive Hydrazide Amplifiers: Polyphenol Sensing in Green Tea with Synthetic Pores. Journal of the American Chemical Society, 2008, 130, 5656-5657.	13.7	77
34	Signal amplification by conjugate addition for differential sensing with synthetic pores. Organic and Biomolecular Chemistry, 2008, 6, 2259.	2.8	13
35	Screening of π-Basic Naphthalene and Anthracene Amplifiers for π-Acidic Synthetic Pore Sensors. Journal of the American Chemical Society, 2008, 130, 4347-4351.	13.7	41
36	Artificial tongues and leaves. Pure and Applied Chemistry, 2008, 80, 1873-1882.	1.9	2

Shinya Hagihara

#	Article	IF	CITATIONS
37	Fluorescently labeled inhibitor for profiling cytoplasmic peptide:N-glycanase. Glycobiology, 2007, 17, 1070-1076.	2.5	31
38	Analysis of ER-associated glycoprotein degradation using synthetic glycopeptide probes. Biochemical and Biophysical Research Communications, 2007, 360, 357-362.	2.1	15
39	Small-Molecule Binding to the Nonquadruplex Form of the Human Telomeric Sequence. ChemBioChem, 2007, 8, 723-726.	2.6	7
40	Exploration of oligosaccharide-protein interactions in glycoprotein quality control by synthetic approaches. Chemical Record, 2006, 6, 290-302.	5.8	2
41	Evaluation of mismatch-binding ligands as inhibitors for Rev–RRE interaction. Bioorganic and Medicinal Chemistry, 2006, 14, 5384-5388.	3.0	15
42	Functional Analysis of Glycoprotein Oligosaccharide through Synthetic Organic Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 492-501.	0.1	1
43	Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats. Nature Chemical Biology, 2005, 1, 39-43.	8.0	156
44	Structural approaches to the study of oligosaccharides in glycoprotein quality control. Current Opinion in Structural Biology, 2005, 15, 481-489.	5.7	61
45	Design and Synthesis of Oligosaccharides that Interfere with Glycoprotein Quality-control systems. ChemBioChem, 2005, 6, 2281-2289.	2.6	28
46	Thermodynamic Analysis of Interactions between N-Linked Sugar Chains and F-Box Protein Fbs1. Journal of Medicinal Chemistry, 2005, 48, 3126-3129.	6.4	38
47	Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Research, 2004, 32, 278-286.	14.5	79
48	Synthesis of glycoprotein molecular probes for the analyses of protein quality control system. Glycoconjugate Journal, 2004, 21, 69-74.	2.7	11
49	Synthesis of fluorine substituted oligosaccharide analogues of monoglucosylated glycan chain, a proposed ligand of lectin-chaperone calreticulin and calnexin. Glycoconjugate Journal, 2004, 21, 257-266.	2.7	25
50	Assessment of the sequence dependency for the binding of 2-aminonaphthyridine to the guanine bulge. Bioorganic and Medicinal Chemistry, 2003, 11, 2347-2353.	3.0	18
51	Induction of a Remarkable Conformational Change in a Human Telomeric Sequence by the Binding of Naphthyridine Dimer:  Inhibition of the Elongation of a Telomeric Repeat by Telomerase. Journal of the American Chemical Society, 2003, 125, 662-666.	13.7	65
52	Recognition of DNA mismatch structures. Nucleic Acids Symposium Series, 2002, 2, 127-128.	0.3	1
53	Selective Intercalation of Charge Neutral Intercalators into GG and CG Steps:Â Implication of HOMO-LUMO Interaction for Sequence-Selective Drug Intercalation into DNA. Journal of the American Chemical Society, 2001, 123, 5695-5702.	13.7	23
54	Site Selective Formation of Thymine Glycol-Containing Oligodeoxynucleotides by Oxidation with Osmium Tetroxide and Bipyridine-Tethered Oligonucleotide. Journal of the American Chemical Society, 2000, 122, 6309-6310.	13.7	13