
Haewon C Mcjeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SSP4: A world of deepening inequality. Global Environmental Change, 2017, 42, 284-296.	7.8	265
2	Can Paris pledges avert severe climate change?. Science, 2015, 350, 1168-1169.	12.6	260
3	GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 2019, 12, 677-698.	3.6	211
4	Limited impact on decadal-scale climate change from increased use of natural gas. Nature, 2014, 514, 482-485.	27.8	194
5	A plant-by-plant strategy for high-ambition coal power phaseout in China. Nature Communications, 2021, 12, 1468.	12.8	163
6	Economic tools to promote transparency and comparability in the Paris Agreement. Nature Climate Change, 2016, 6, 1000-1004.	18.8	122
7	Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nature Climate Change, 2020, 10, 920-927.	18.8	117
8	Quantifying operational lifetimes for coal power plants under the Paris goals. Nature Communications, 2019, 10, 4759.	12.8	112
9	Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technological Forecasting and Social Change, 2015, 90, 103-118.	11.6	111
10	A near-term to net zero alternative to the social cost of carbon for setting carbon prices. Nature Climate Change, 2020, 10, 1010-1014.	18.8	89
11	Can updated climate pledges limit warming well below 2°C?. Science, 2021, 374, 693-695.	12.6	80
12	Carbon capture and storage: combining economic analysis with expert elicitations to inform climate policy. Climatic Change, 2009, 96, 379-408.	3.6	78
13	Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nature Communications, 2021, 12, 6245.	12.8	78
14	Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?. Energy Economics, 2011, 33, 619-631.	12.1	77
15	Sensitivity to energy technology costs: A multi-model comparison analysis. Energy Policy, 2015, 80, 244-263.	8.8	75
16	Measuring progress from nationally determined contributions to mid-century strategies. Nature Climate Change, 2017, 7, 871-874.	18.8	73
17	CCUS in China's mitigation strategy: insights from integrated assessment modeling. International Journal of Greenhouse Gas Control, 2019, 84, 204-218.	4.6	72
18	Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement. Technological Forecasting and Social Change, 2010, 77, 1139-1146.	11.6	70

HAEWON C MCJEON

#	Article	IF	CITATIONS
19	The contribution of Paris to limit global warming to 2 °C. Environmental Research Letters, 2015, 10, 125002.	5.2	69
20	Improved representation of investment decisions in assessments of CO2 mitigation. Nature Climate Change, 2015, 5, 436-440.	18.8	68
21	Carbon capture and storage across fuels and sectors in energy system transformation pathways. International Journal of Greenhouse Gas Control, 2017, 57, 34-41.	4.6	68
22	Modeling Uncertainty in Integrated Assessment of Climate Change: A Multimodel Comparison. Journal of the Association of Environmental and Resource Economists, 2018, 5, 791-826.	1.5	64
23	From Zero to Hero?: Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better. Frontiers in Climate, 2019, 1, .	2.8	59
24	Implications of sustainable development considerations for comparability across nationally determined contributions. Nature Climate Change, 2018, 8, 124-129.	18.8	55
25	Fusing subnational with national climate action is central to decarbonization: the case of the United States. Nature Communications, 2020, 11, 5255.	12.8	47
26	The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environmental Research Letters, 2021, 16, 114012.	5.2	40
27	Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environmental Research Letters, 2020, 15, 044026.	5.2	37
28	Cost of power or power of cost: A U.S. modeling perspective. Renewable and Sustainable Energy Reviews, 2017, 77, 861-874.	16.4	34
29	The role of carbon dioxide removal in net-zero emissions pledges. Energy and Climate Change, 2021, 2, 100043.	4.4	28
30	Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nature Climate Change, 2022, 12, 88-96.	18.8	26
31	Energy R&D portfolio analysis based on climate change mitigation. Energy Economics, 2011, 33, 634-643.	12.1	24
32	Climate and carbon budget implications of linked future changes in CO ₂ and non-CO ₂ forcing. Environmental Research Letters, 2019, 14, 044007.	5.2	23
33	Trapped between two tails: trading off scientific uncertainties via climate targets. Environmental Research Letters, 2013, 8, 034019.	5.2	22
34	The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios. Energy Policy, 2015, 80, 264-274.	8.8	22
35	The Paris pledges and the energy-water-land nexus in Latin America: Exploring implications of greenhouse gas emission reductions. PLoS ONE, 2019, 14, e0215013.	2.5	20
36	HOW MUCH COULD ARTICLE 6 ENHANCE NATIONALLY DETERMINED CONTRIBUTION AMBITION TOWARD PARIS AGREEMENT GOALS THROUGH ECONOMIC EFFICIENCY?. Climate Change Economics, 2021, 12, .	5.0	19

HAEWON C MCJEON

#	Article	IF	CITATIONS
37	Quantifying the regional stranded asset risks from new coal plants under 1.5 °C. Environmental Research Letters, 2022, 17, 024029.	5.2	18
38	The role of negative emissions in meeting China's 2060 carbon neutrality goal. Oxford Open Climate Change, 2021, 1, .	1.3	17
39	<i>gcamdata</i> : An R Package for Preparation, Synthesis, andÂTracking of Input Data for the GCAM Integrated Human-Earth Systems Model. Journal of Open Research Software, 2019, 7, 6.	5.9	17
40	Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations. Energy Policy, 2017, 110, 518-524.	8.8	16
41	Integrated Assessment Modeling. , 2012, , 169-209.		13
42	Long-term payoffs of near-term low-carbon deployment policies. Energy Policy, 2015, 86, 493-505.	8.8	13
43	Effects of Direct Air Capture Technology Availability on Stranded Assets and Committed Emissions in the Power Sector. Frontiers in Climate, 2021, 3, .	2.8	12
44	Integrated Assessment Modeling of Korea's 2050 Carbon Neutrality Technology Pathways. Energy and Climate Change, 2022, 3, 100075.	4.4	12
45	The energy system transformation needed to achieve the US long-term strategy. Joule, 2022, 6, 1357-1362.	24.0	12
46	Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework. Climatic Change, 2016, 136, 233-246.	3.6	11
47	Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?. Energy Policy, 2021, 150, 112138.	8.8	11
48	Technology, technology, technology: An integrated assessment of deep decarbonization pathways for the Canadian oil sands. Energy Strategy Reviews, 2022, 41, 100804.	7.3	11
49	Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model. Energy, 2015, 90, 1682-1694.	8.8	10
50	Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated-assessment model. Energy Economics, 2014, 43, 22-33.	12.1	8
51	Assessing the Interactions among U.S. Climate Policy, Biomass Energy, and Agricultural Trade. Energy Journal, 2014, 35, .	1.7	8
52	Fossil energy deployment through midcentury consistent with 2°C climate stabilization. Energy and Climate Change, 2021, 2, 100034.	4.4	7
53	Global climate, energy, and economic implications of international energy offsets programs. Climatic Change, 2015, 133, 583-596.	3.6	6
54	The Value of CCS under Current Policy Scenarios: NDCs and Beyond. Energy Procedia, 2017, 114, 7521-7527.	1.8	6

HAEWON C MCJEON

#	Article	IF	CITATIONS
55	The Future Role of CCS in Electricity and Liquid Fuel Supply. Energy Procedia, 2017, 114, 7606-7614.	1.8	5
56	Quantifying the reductions in mortality from air-pollution by cancelling new coal power plants. Energy and Climate Change, 2021, 2, 100023.	4.4	5
57	An integrated assessment of a low coal low nuclear future energy system for Taiwan. Energy and Climate Change, 2021, 2, 100022.	4.4	4
58	Modeling Uncertainty in Climate Change: A Multi-Model Comparison. SSRN Electronic Journal, 0, , .	0.4	3
59	The Impact of U.S. Reâ€engagement in Climate on the Paris Targets. Earth's Future, 2021, 9, e2021EF002077.	6.3	3
60	A U.S.‒China coal power transition and the global 1.5°C pathway. Advances in Climate Change Research, 2022, 13, 179-186.	5.1	3
61	Sensitivity to Energy Technology Costs: A Multi-Model Comparison Analysis. SSRN Electronic Journal, 0, , .	0.4	3
62	Modeling Uncertainty in Climate Change: A MultiiModel Comparison. SSRN Electronic Journal, 0, , .	0.4	0
63	Transparency crucial to Paris climate scenarios—Response. Science, 2022, 375, 828-828.	12.6	0