List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The leaky funnel model revisited. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 19131.	1.7	7
2	Simulating Lagrangian Subgrid‣cale Dispersion on Neutral Surfaces in the Ocean. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	5
3	Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut. Continental Shelf Research, 2022, 233, 104645.	1.8	6
4	Global warming decreases connectivity among coral populations. Nature Climate Change, 2022, 12, 83-87.	18.8	25
5	Understanding the circulation in the deep, micro-tidal and strongly stratified Congo River estuary. Ocean Modelling, 2021, 167, 101890.	2.4	9
6	Tracers and Timescales: Tools for Distilling and Simplifying Complex Fluid Mechanical Problems. Water (Switzerland), 2021, 13, 2796.	2.7	1
7	An implicit wetting–drying algorithm for the discontinuous Galerkin method: application to the Tonle Sap, Mekong River Basin. Environmental Fluid Mechanics, 2020, 20, 923-951.	1.6	11
8	Suspended sediment properties in the Lower Mekong River, from fluvial to estuarine environments. Estuarine, Coastal and Shelf Science, 2020, 233, 106522.	2.1	16
9	Timescale Methods for Simplifying, Understanding and Modeling Biophysical and Water Quality Processes in Coastal Aquatic Ecosystems: A Review. Water (Switzerland), 2020, 12, 2717.	2.7	30
10	Age of Water Particles as a Diagnosis of Steady-State Flows in Shallow Rectangular Reservoirs. Water (Switzerland), 2020, 12, 2819.	2.7	3
11	Consistent Boundary Conditions for Age Calculations. Water (Switzerland), 2020, 12, 1274.	2.7	7
12	Numerical Simulation of Water Renewal Timescales in the Mahakam Delta, Indonesia. Water (Switzerland), 2020, 12, 1017.	2.7	5
13	Top-to-bottom Ekman layer and its implications for shallow rotating flows. Environmental Fluid Mechanics, 2019, 19, 1105-1119.	1.6	2
14	Normal modes and resonance in Ontario Lacus: a hydrocarbon lake of Titan. Ocean Dynamics, 2019, 69, 1121-1132.	2.2	0
15	Propagation of tides along a river with a sloping bed. Journal of Fluid Mechanics, 2019, 872, 39-73.	3.4	19
16	Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics. Ocean Modelling, 2018, 124, 111-124.	2.4	17
17	A numerical study of tides in Titan′s northern seas, Kraken and Ligeia Maria. Icarus, 2018, 310, 105-126	2.5	7
18	Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 2018, 121, 49-75.	2.4	313

#	Article	IF	CITATIONS
19	A fully consistent and conservative vertically adaptive coordinate system for SLIMÂ3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika. Geoscientific Model Development, 2018, 11, 1161-1179.	3.6	15
20	A Lévy-flight diffusion model to predict transgenic pollen dispersal. Journal of the Royal Society Interface, 2017, 14, 20160889.	3.4	19
21	The Gulf of Carpentaria heated Torres Strait and the Northern Great Barrier Reef during the 2016 mass coral bleaching event. Estuarine, Coastal and Shelf Science, 2017, 194, 172-181.	2.1	23
22	Submesoscale tidal eddies in the wake of coral islands and reefs: satellite data and numerical modelling. Ocean Dynamics, 2017, 67, 897-913.	2.2	25
23	Tracing the Ventilation Pathways of the Deep North Pacific Ocean Using Lagrangian Particles and Eulerian Tracers. Journal of Physical Oceanography, 2017, 47, 1261-1280.	1.7	10
24	A stabilization for threeâ€dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations. International Journal for Numerical Methods in Fluids, 2016, 81, 558-585.	1.6	7
25	Simulations of the flow in the Mahakam river–lake–delta system, Indonesia. Environmental Fluid Mechanics, 2016, 16, 603-633.	1.6	15
26	Numerical study of tides in Ontario Lacus, a hydrocarbon lake on the surface of the Saturnian moon Titan. Ocean Dynamics, 2016, 66, 461-482.	2.2	8
27	Partial ages: diagnosing transport processes by means of multiple clocks. Ocean Dynamics, 2016, 66, 367-386.	2.2	14
28	Unstructured-mesh modeling of the Congo river-to-sea continuum. Ocean Dynamics, 2016, 66, 589-603.	2.2	15
29	An assessment of transport timescales and return coefficient in adjacent tropical estuaries. Continental Shelf Research, 2016, 124, 49-62.	1.8	13
30	An ecological model for the Scheldt estuary and tidal rivers ecosystem: spatial and temporal variability of plankton. Hydrobiologia, 2016, 775, 51-67.	2.0	8
31	Modelling fine-grained sediment transport in the Mahakam land–sea continuum, Indonesia. Journal of Hydro-Environment Research, 2016, 13, 103-120.	2.2	8
32	Stereographic projection for threeâ€dimensional global discontinuous <scp>G</scp> alerkin atmospheric modeling. Journal of Advances in Modeling Earth Systems, 2015, 7, 1026-1050.	3.8	1
33	Connectivity between submerged and nearâ€seaâ€surface coral reefs: can submerged reef populations act as refuges?. Diversity and Distributions, 2015, 21, 1254-1266.	4.1	46
34	The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 2015, 167, 336-346.	2.1	32
35	Simulation of flow in compound open-channel using a discontinuous Galerkin finite-element method with Smagorinsky turbulence closure. Journal of Hydro-Environment Research, 2014, 8, 396-409.	2.2	9
36	Modelling metal speciation in the Scheldt Estuary: Combining a flexible-resolution transport model with empirical functions. Science of the Total Environment, 2014, 476-477, 346-358.	8.0	13

#	Article	IF	CITATIONS
37	Residence time vs influence time. Journal of Marine Systems, 2014, 132, 185-195.	2.1	45

38 Integrated modelling of faecal contamination in a densely populated river–sea continuum (Scheldt) Tj ETQq0 0 0,gBT /Overlock 10 Tf

39	Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecological Modelling, 2014, 272, 160-174.	2.5	87
40	Contaminant exchange rates in estuaries – New formulae accounting for advection and dispersion. Progress in Oceanography, 2014, 120, 139-153.	3.2	23
41	Adaptive time stepping algorithm for Lagrangian transport models: Theory and idealised test cases. Ocean Modelling, 2013, 68, 9-21.	2.4	8
42	A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. Journal of Marine Systems, 2013, 128, 27-39.	2.1	33
43	Reprint of Water renewal timescales in the Scheldt Estuary. Journal of Marine Systems, 2013, 128, 3-16.	2.1	19
44	A baroclinic discontinuous Galerkin finite element model for coastal flows. Ocean Modelling, 2013, 61, 1-20.	2.4	27
45	The net water circulation through Torres strait. Continental Shelf Research, 2013, 64, 66-74.	1.8	35
46	Residence and exposure times : when diffusion does not matter. Ocean Dynamics, 2012, 62, 1399-1407.	2.2	8
47	Coupling of a discontinuous Galerkin finite element marine model with a finite difference turbulence closure model. Ocean Modelling, 2012, 47, 55-64.	2.4	7
48	Downstream hydraulic geometry of a tidally influenced river delta. Journal of Geophysical Research, 2012, 117, .	3.3	50
49	Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case. Ocean Dynamics, 2012, 62, 501-514.	2.2	30
50	Water renewal timescales in the Scheldt Estuary. Journal of Marine Systems, 2012, 94, 74-86.	2.1	57
51	Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary. Water Research, 2011, 45, 2724-2738.	11.3	48
52	Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces. Ocean Modelling, 2011, 39, 351-361.	2.4	10
53	The vertical age profile in sea ice: Theory and numerical results. Ocean Modelling, 2011, 40, 211-226.	2.4	3
54	On the biases affecting water ages inferred from isotopic data. Journal of Hydrology, 2011, 410, 217-225.	5.4	17

#	Article	IF	CITATIONS
55	Residence time, exposure time and connectivity in the Scheldt Estuary. Journal of Marine Systems, 2011, 84, 85-95.	2.1	86
56	Possible effects of global climate change on the ecosystem of Lake Tanganyika. Hydrobiologia, 2011, 671, 147-163.	2.0	30
57	Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dynamics, 2011, 61, 1107-1120.	2.2	26
58	Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dynamics, 2011, 61, 2211-2228.	2.2	87
59	A fully implicit wetting–drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 509-524.	6.6	96
60	Front dynamics in fractional-order epidemic models. Journal of Theoretical Biology, 2011, 279, 9-16.	1.7	72
61	Free and forced thermocline oscillations in Lake Tanganyika. , 2011, , 146-162.		4
62	On the parameters of absorbing layers for shallow water models. Ocean Dynamics, 2010, 60, 65-79.	2.2	20
63	Capturing the residence time boundary layer—application to the Scheldt Estuary. Ocean Dynamics, 2010, 60, 535-554.	2.2	17
64	A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Ocean Dynamics, 2010, 60, 1395-1414.	2.2	19
65	A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Ocean Dynamics, 2010, 60, 1371-1393.	2.2	30
66	Multi-scale modelling of coastal, shelf and global ocean dynamics. Ocean Dynamics, 2010, 60, 1357-1359.	2.2	12
67	Assessing the parameterisation of the settling flux in a depth-integrated model of the fate of decaying and sinking particles, with application to fecal bacteria in the Scheldt Estuary. Environmental Fluid Mechanics, 2010, 10, 157-175.	1.6	9
68	Tracer and timescale methods for understanding complex geophysical and environmental fluid flows. Environmental Fluid Mechanics, 2010, 10, 1-5.	1.6	7
69	Residence time and exposure time of sinking phytoplankton in the euphotic layer. Journal of Theoretical Biology, 2010, 262, 505-516.	1.7	12
70	Simple test cases for validating a finite element unstructured grid fecal bacteria transport model. Applied Mathematical Modelling, 2010, 34, 3055-3070.	4.2	4
71	A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coastal Engineering, 2010, 57, 850-863.	4.0	60
72	Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geoscientific Model Development, 2010, 3, 603-633.	3.6	279

#	Article	IF	CITATIONS
73	An improved methodology for filling missing values in spatiotemporal climate data set. Computational Geosciences, 2010, 14, 55-64.	2.4	16
74	On the time to tracer equilibrium in the global ocean. Ocean Science, 2009, 5, 13-28.	3.4	17
75	A flux-limiting wetting–drying method for finite-element shallow-water models, with application to the Scheldt Estuary. Advances in Water Resources, 2009, 32, 1726-1739.	3.8	40
76	Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika. Hydrobiologia, 2009, 625, 117-134.	2.0	31
77	Design of a sampling strategy to optimally calibrate a reactive transport model: Exploring the potential for Escherichia coli in the Scheldt Estuary. Environmental Modelling and Software, 2009, 24, 969-981.	4.5	8
78	A finite element method for solving the shallow water equations on the sphere. Ocean Modelling, 2009, 28, 12-23.	2.4	45
79	Dispersion Analysis of Discontinuous Galerkin Schemes Applied to Poincaré, Kelvin and Rossby Waves. Journal of Scientific Computing, 2008, 34, 26-47.	2.3	15
80	Diagnosing ocean tracer transport from Sellafield and Dounreay by equivalent diffusion and age. Advances in Atmospheric Sciences, 2008, 25, 805-814.	4.3	4
81	On the mathematical stability of stratified flow models with local turbulence closure schemes. Ocean Dynamics, 2008, 58, 237-246.	2.2	10
82	Multi-scale modeling: nested-grid and unstructured-mesh approaches. Ocean Dynamics, 2008, 58, 335-336.	2.2	26
83	The leaky funnel model, a metaphor of the ventilation of the World Ocean as simulated in an OGCM. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 761-774.	1.7	8
84	A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2008, 79, 143-151.	2.1	102
85	A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin. Ocean Modelling, 2008, 22, 26-47.	2.4	52
86	Age and the time lag method. Continental Shelf Research, 2008, 28, 1057-1067.	1.8	10
87	Tracer Conservation for Three-Dimensional, Finite-Element, Free-Surface, Ocean Modeling on Moving Prismatic Meshes. Monthly Weather Review, 2008, 136, 420-442.	1.4	38
88	Improving the parameterisation of horizontal density gradient in one-dimensional water column models for estuarine circulation. Ocean Science, 2008, 4, 239-246.	3.4	7
89	Capturing the bottom boundary layer in finite element ocean models. Ocean Modelling, 2007, 17, 153-162.	2.4	14
90	Overshootings and spurious oscillations caused by biharmonic mixing. Ocean Modelling, 2007, 17, 183-198.	2.4	18

#	Article	IF	CITATIONS
91	Unstructured, anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean. Continental Shelf Research, 2007, 27, 1344-1356.	1.8	34
92	Influence of the turbulence closure scheme on the finite-element simulation of the upwelling in the wake of a shallow-water island. Continental Shelf Research, 2007, 27, 2329-2345.	1.8	12
93	The backward ÃŽto method for the Lagrangian simulation of transport processes with large space variations of the diffusivity. Ocean Science, 2007, 3, 525-535.	3.4	14
94	A simple model of the ecoâ€hydrodynamics of the epilimnion of Lake Tanganyika. Freshwater Biology, 2007, 52, 2087-2100.	2.4	16
95	Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model. Ecological Modelling, 2007, 200, 225-233.	2.5	27
96	Diagnoses of vertical transport in a three-dimensional finite element model of the tidal circulation around an island. Estuarine, Coastal and Shelf Science, 2007, 74, 655-669.	2.1	23
97	Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika. Estuarine, Coastal and Shelf Science, 2007, 74, 628-640.	2.1	49
98	High-order h-adaptive discontinuous Galerkin methods for ocean modelling. Ocean Dynamics, 2007, 57, 109-121.	2.2	42
99	Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases. Ocean Dynamics, 2007, 57, 189-203.	2.2	40
100	An adaptive finite element water column model using the Mellor–Yamada level 2.5 turbulence closure scheme. Ocean Modelling, 2006, 12, 205-223.	2.4	15
101	A one-dimensional benchmark for the propagation of Poincar $ ilde{A}$ © waves. Ocean Modelling, 2006, 15, 101-123.	2.4	7
102	Erratum to "An adaptive finite element water column model using the Mellor–Yamada level 2.5 turbulence closure scheme―[Ocean Modelling 12 (2006) 205–223]. Ocean Modelling, 2006, 15, 137.	2.4	0
103	The Residence Time of Settling Particles in the Surface Mixed Layer. Environmental Fluid Mechanics, 2006, 6, 25-42.	1.6	27
104	On the behaviour of the residence time at the bottom of the mixed layer. Environmental Fluid Mechanics, 2006, 6, 541-547.	1.6	16
105	Comparison of free-surface and rigid-lid finite element models of barotropic instabilities. Ocean Dynamics, 2006, 56, 86-103.	2.2	5
106	The boundary layer of the residence time field. Ocean Dynamics, 2006, 56, 139-150.	2.2	43
107	High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuarine, Coastal and Shelf Science, 2006, 68, 36-46.	2.1	67
108	Review of solutions for 3D hydrodynamic modeling applied to aquaculture in South Pacific atoll lagoons. Marine Pollution Bulletin, 2006, 52, 1138-1155.	5.0	39

#	Article	IF	CITATIONS
109	Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dynamics, 2005, 55, 326-337.	2.2	40
110	An efficient Eulerian finite element method for the shallow water equations. Ocean Modelling, 2005, 10, 115-136.	2.4	95
111	Symmetry and asymmetry of water ages in a one-dimensional flow. Journal of Marine Systems, 2004, 48, 61-66.	2.1	6
112	Tracer methods in geophysical fluid dynamics. Journal of Marine Systems, 2004, 48, 1-2.	2.1	2
113	Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuarine, Coastal and Shelf Science, 2004, 60, 705-716.	2.1	74
114	Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuarine, Coastal and Shelf Science, 2004, 61, 691-702.	2.1	141
115	The age as a diagnostic of the dynamics of marine ecosystem models. Ocean Dynamics, 2004, 54, 221-231.	2.2	18
116	Are there internal Kelvin waves in Lake Tanganyika?. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	15
117	Advection schemes for unstructured grid ocean modelling. Ocean Modelling, 2004, 7, 39-58.	2.4	43
118	Analysis of Wind-Induced Thermocline Oscillations of Lake Tanganyika. Environmental Fluid Mechanics, 2003, 3, 23-39.	1.6	44
119	Comments on "Water renewal time for classification of atoll lagoons in the Tuamotu Archipelago (French Polynesia)" by Andr�fou�t et al. [Coral Reefs (2001) 20:399?408]. Coral Reefs, 2003, 22, 307-308.	2.2	6
120	A note on the age of radioactive tracers. Journal of Marine Systems, 2003, 38, 277-286.	2.1	32
121	A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Applied Numerical Mathematics, 2003, 47, 1-30.	2.1	87
122	Eddies around Guam, an island in the Mariana Islands group. Continental Shelf Research, 2003, 23, 991-1003.	1.8	28
123	A comparison of three finite elements to solve the linear shallow water equations. Ocean Modelling, 2003, 5, 17-35.	2.4	37
124	Reply to Mellor's comments on "Stability of algebraic non-equilibrium second-order closure models― (Ocean Modelling 3 (2001) 33–50). Ocean Modelling, 2003, 5, 291-293.	2.4	4
125	Chapter 15 Merging scales in models of water circulation: perspectives from the great barrier reef. Elsevier Oceanography Series, 2003, , 411-429.	0.1	8
126	Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 2002, 29, 8-1-8-4.	4.0	28

#	Article	IF	CITATIONS
127	The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf Research, 2002, 22, 1379-1395.	1.8	35
128	The concept of age in marine modelling. Journal of Marine Systems, 2002, 31, 279-297.	2.1	73
129	Transient behaviour of water ages in the World Ocean. Mathematical and Computer Modelling, 2002, 36, 121-127.	2.0	24
130	Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2002, 54, 655-668.	2.1	103
131	An error frequently made in the evaluation of advective transport in two-dimensional Lagrangian models of advection-diffusion in coral reef waters. Marine Ecology - Progress Series, 2002, 235, 299-302.	1.9	48
132	Stability of algebraic non-equilibrium second-order closure models. Ocean Modelling, 2001, 3, 33-50.	2.4	30
133	Some Properties of Generalized Age-Distribution Equations in Fluid Dynamics. SIAM Journal on Applied Mathematics, 2001, 61, 1526-1544.	1.8	21
134	Enforcing the continuity equation in numerical models of geophysical fluid flows. Applied Mathematics Letters, 2001, 14, 867-873.	2.7	5
135	The concept of age in marine modelling. Journal of Marine Systems, 2001, 28, 229-267.	2.1	302
136	Numerical Discretization of Rotated Diffusion Operators in Ocean Models. Monthly Weather Review, 2000, 128, 2711-2733.	1.4	26
137	Delaunay mesh generation for an unstructured-grid ocean general circulation model. Ocean Modelling, 2000, 2, 17-28.	2.4	36
138	Accuracy and stability of the discretised isopycnal-mixing equation. Applied Mathematics Letters, 1999, 12, 81-88.	2.7	8
139	Toward a general theory of the age in ocean modelling. Ocean Modelling, 1999, 1, 17-27.	2.4	198
140	Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. Journal of Geophysical Research, 1999, 104, 13681-13695.	3.3	93
141	A coastal ocean model intercomparison study for a three-dimensional idealised test case. Applied Mathematical Modelling, 1998, 22, 165-182.	4.2	15
142	What is wrong with isopycnal diffusion in world ocean models?. Applied Mathematical Modelling, 1998, 22, 367-378.	4.2	13
143	A two-compartment model for understanding the simulated three-dimensional circulation in Prince William Sound, Alaska. Continental Shelf Research, 1998, 18, 279-287.	1.8	11
144	Island-generated internal waves at Scott Reef, Western Australia. Continental Shelf Research, 1998, 18, 1649-1666.	1.8	24

#	Article	IF	CITATIONS
145	Another Reason Why Simple Discretizations of Rotated Diffusion Operators Cause Problems in Ocean Models: Comments on "Isoneutral Diffusion in az-Coordinate Ocean Model― Journal of Physical Oceanography, 1998, 28, 1552-1559.	1.7	21
146	Impact of sea-ice formation on the properties of Antarctic bottom water. Annals of Claciology, 1997, 25, 276-281.	1.4	16
147	Sensitivity of a global ice-ocean model to the Bering Strait throughflow. Climate Dynamics, 1997, 13, 349-358.	3.8	51
148	The water residence time in the Mururoa atoll lagoon: sensitivity analysis of a three-dimensional model. Coral Reefs, 1997, 16, 193-203.	2.2	97
149	A simple model of the tracer flux from the Mururoa lagoon to the Pacific. Applied Mathematics Letters, 1997, 10, 13-17.	2.7	15
150	Some mathematical problems associated with the development and use of marine models. , 1997, , 39-86.		22
151	Three-dimensional island wakes in the field, laboratory experiments and numerical models. Continental Shelf Research, 1996, 16, 1437-1452.	1.8	90
152	Presentation of a family of turbulence closure models for stratified shallow water flows and preliminary application to the Rhine outflow region. Continental Shelf Research, 1996, 16, 101-130.	1.8	105
153	On the numerical treatment of a lateral boundary layer in a shallow sea model. Journal of Marine Systems, 1996, 8, 107-117.	2.1	2
154	On the computation of the barotropic mode of a free-surface world ocean model. Annales Geophysicae, 1995, 13, 675-688.	1.6	44
155	Comments on "the sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies―by N. Pinardi, A. Rosati and R. Pacanowski. Journal of Marine Systems, 1995, 6, 121-123.	2.1	0
156	Turbulence energy models in shallow sea oceanography. Coastal and Estuarine Studies, 1995, , 97-123.	0.4	9
157	Haline stratification in the Rhine-Meuse freshwater plume: a three-dimensional model sensitivity analysis. Continental Shelf Research, 1995, 15, 1597-1630.	1.8	54
158	An analysis of the vertical velocity field computed by a three-dimensional model in the region of the Bering Strait. Tellus, Series A: Dynamic Meteorology and Oceanography, 1994, 46, 134-148.	1.7	5
159	A model study of the Rhine discharge front and downwelling circulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 1994, 46, 149-159.	1.7	10
160	An analysis of the vertical velocity field computed by a three-dimensional model in the region of the Bering Strait. Tellus, Series A: Dynamic Meteorology and Oceanography, 1994, 46, 134-148.	1.7	3
161	A model study of the Rhine discharge front and downwelling circulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 1994, 46, 149-159.	1.7	15
162	An ill-designed algorithm for solving a multi-dimensional nonlinear diffusion equation in a domain limited by a moving boundary. Mathematical and Computer Modelling, 1994, 19, 75-81.	2.0	1

#	Article	IF	CITATIONS
163	The assimilation of altimetric data into the barotropic mode of a rigid lid ocean model. Mathematical and Computer Modelling, 1994, 20, 85-94.	2.0	2
164	On the practical advantages of the quasi-equilibrium version of the Mellor and Yamada level 2.5 turbulence closure applied to marine modelling. Applied Mathematical Modelling, 1994, 18, 281-287.	4.2	55
165	Stability of a FBTCS Scheme Applied to the Propagation of Shallow-Water Inertia-Gravity Waves on Various Space Grids. Journal of Computational Physics, 1993, 108, 95-104.	3.8	30
166	Preliminary tests of a hybrid numerical-asymptotic method for solving nonlinear advection-diffusion equations in a domain limited by a self-adjusting boundary. Mathematical and Computer Modelling, 1993, 17, 35-47.	2.0	2
167	Three-dimensional general circulation model of the northern Bering Sea's summer ecohydrodynamics. Continental Shelf Research, 1993, 13, 509-542.	1.8	44
168	Numerical mass conservation in a free-surface sigma coordinate marine model with mode splitting. Journal of Marine Systems, 1993, 4, 365-370.	2.1	7
169	On the use of the σ-coordinate system in regions of large bathymetric variations. Journal of Marine Systems, 1992, 3, 381-390.	2.1	57
170	A three-dimensional model of the water circulation around an island in shallow water. Continental Shelf Research, 1992, 12, 891-906.	1.8	41
171	Revisiting Nihoul's model for oil slicks transport and spreading on the sea. Ecological Modelling, 1992, 64, 71-75.	2.5	6
172	Simulation mathématique des nappes d'hydrocarbures et comparaison avec les observations par télédétection. Hydroecologie Appliquee, 1992, 4, 23-31.	1.3	3
173	Upwelling and upsloping in three-dimensional marine models. Applied Mathematical Modelling, 1989, 13, 462-467.	4.2	26
174	Modelling the general circulation of shelf seas by 3Dk-ε models. Earth-Science Reviews, 1989, 26, 163-189.	9.1	68
175	Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean. Progress in Oceanography, 1989, 22, 277-359.	3.2	368
176	Turbulent Fields Associated with the General Circulation in the Northern Bering Sea. Elsevier Oceanography Series, 1988, 46, 77-93.	0.1	3