Jun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346338/publications.pdf Version: 2024-02-01

Ιτιν Ζηστι

#	Article	IF	CITATIONS
1	Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chemical Engineering Journal, 2020, 381, 122710.	6.6	160
2	In Situ Recyclable Surface-Enhanced Raman Scattering-Based Detection of Multicomponent Pesticide Residues on Fruits and Vegetables by the Flower-like MoS ₂ @Ag Hybrid Substrate. ACS Applied Materials & Interfaces, 2020, 12, 14386-14399.	4.0	148
3	Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosensors and Bioelectronics, 2013, 44, 89-94.	5.3	107
4	Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nature Communications, 2020, 11, 1785.	5.8	107
5	Construction of Long Narrow Gaps in Ag Nanoplates. Journal of the American Chemical Society, 2018, 140, 15560-15563.	6.6	91
6	Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Scientific Reports, 2019, 9, 5454.	1.6	79
7	Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. Journal of Materials Chemistry A, 2013, 1, 9942.	5.2	77
8	High-Sensitivity Displacement Sensor Based on a Bent Fiber Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 2013, 25, 2354-2357.	1.3	68
9	Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. ACS Applied Materials & Interfaces, 2019, 11, 34091-34099.	4.0	52
10	Recyclable label-free SERS-based immunoassay of PSA in human serum mediated by enhanced photocatalysis arising from Ag nanoparticles and external magnetic field. Applied Surface Science, 2020, 528, 146953.	3.1	50
11	Hydrothermal synthesis of Ag@MSiO ₂ @Ag three core–shell nanoparticles and their sensitive and stable SERS properties. Nanoscale, 2016, 8, 4908-4914.	2.8	49
12	Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers. Talanta, 2018, 188, 238-244.	2.9	48
13	M–Z Interferometer Constructed by Two S-Bend Fibers for Displacement and Force Measurements. IEEE Photonics Technology Letters, 2014, 26, 837-840.	1.3	47
14	Au@Ag core–shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Physical Chemistry Chemical Physics, 2015, 17, 6819-6826.	1.3	46
15	SERS-based multiplex immunoassay of tumor markers using double SiO2@Ag immune probes and gold-film hemisphere array immune substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 48-58.	2.3	46
16	Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 43715-43725.	4.0	45
17	Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate. Analyst, The, 2016, 141, 2534-2541.	1.7	44
18	The construction of silver aggregate with inbuilt Raman molecule and gold nanowire forest in SERS-based immunoassay for cancer biomarker detection. Sensors and Actuators B: Chemical, 2018, 258, 105-114.	4.0	42

#	Article	IF	CITATIONS
19	Seedless one-spot synthesis of 3D and 2D Ag nanoflowers for multiple phase SERS-based molecule detection. Sensors and Actuators B: Chemical, 2019, 301, 127142.	4.0	41
20	Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Talanta, 2014, 123, 161-168.	2.9	40
21	Hydrothermal synthesis of silver nanocubes with tunable edge lengths and their size dependent SERS behaviors. Journal of Alloys and Compounds, 2015, 632, 140-146.	2.8	39
22	Octupolar Metastructures for a Highly Sensitive, Rapid, and Reproducible Phage-Based Detection of Bacterial Pathogens by Surface-Enhanced Raman Scattering. ACS Sensors, 2017, 2, 947-954.	4.0	38
23	Molybdenum Oxide/Tungsten Oxide Nano-heterojunction with Improved Surface-Enhanced Raman Scattering Performance. ACS Applied Materials & Interfaces, 2021, 13, 33345-33353.	4.0	37
24	All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity. IEEE Sensors Journal, 2013, 13, 2780-2785.	2.4	36
25	Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 25601-25608.	1.3	35
26	Dietary <i>Apostichopus japonicus</i> Alleviates Diabetes Symptoms and Modulates Genes Expression in Kidney Tissues of <i>db</i> / <i>db</i> Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 154-162.	2.4	34
27	Novel highâ€docosahexaenoicâ€acid tuna oil supplementation modulates gut microbiota and alleviates obesity in highâ€fat diet mice. Food Science and Nutrition, 2020, 8, 6513-6527.	1.5	34
28	Silver nanocube-mediated sensitive immunoassay based on surface-enhanced Raman scattering assisted by etched silicon nanowire arrays. Analyst, The, 2014, 139, 5893-5900.	1.7	32
29	Synergistic effect of a "stellate―mesoporous SiO ₂ @Au nanoprobe and coffee-ring-free hydrophilic–hydrophobic substrate assembly in an ultrasensitive SERS-based immunoassay for a tumor marker. Journal of Materials Chemistry C, 2020, 8, 2142-2154.	2.7	32
30	Nonmetallic SERS-based immunosensor byintegrating MoS2 nanoflower and nanosheet towards the direct serum detection of carbohydrate antigen 19-9. Biosensors and Bioelectronics, 2021, 193, 113481.	5.3	31
31	Quantitative and Recyclable Surface-Enhanced Raman Spectroscopy Immunoassay Based on Fe ₃ O ₄ @TiO ₂ @Ag Core–Shell Nanoparticles and Au Nanowire/Polydimethylsiloxane Substrates. ACS Applied Nano Materials, 2020, 3, 4610-4622.	2.4	30
32	Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer. Biosensors and Bioelectronics, 2019, 145, 111563.	5.3	29
33	Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres. Applied Surface Science, 2016, 378, 181-190.	3.1	28
34	SERS-based cascade amplification bioassay protocol of miRNA-21 by using sandwich structure with biotin–streptavidin system. Analyst, The, 2019, 144, 1741-1750.	1.7	28
35	Construction of Reusable PMMA–Ag/g-C ₃ N ₄ /Ag Hybrid Substrates with Plasmonic-Enhanced Intrinsic Raman Signals for Quantitative SERS Detection and Green Degradation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12885-12898.	3.2	28
36	Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic-hydrophobic Ag-modified PMMA substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120092.	2.0	28

#	Article	IF	CITATIONS
37	Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering. Optics Letters, 2010, 35, 941.	1.7	26
38	Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Responses of Au@Ag Core–Shell Nanorods with Different Thickness of Ag Shell. Journal of Nanoscience and Nanotechnology, 2014, 14, 4245-4250.	0.9	26
39	In situ controlled sputtering deposition of gold nanoparticles on MnO ₂ nanorods as surface-enhanced Raman scattering substrates for molecular detection. Dalton Transactions, 2015, 44, 7606-7612.	1.6	26
40	Ag@Au hexagonal nanorings: synthesis, mechanistic analysis and structure-dependent optical characteristics. Journal of Materials Chemistry C, 2015, 3, 9726-9733.	2.7	26
41	Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations. Scientific Reports, 2016, 6, 38784.	1.6	26
42	Study of the mechanism of overlays acting on laser shock waves. Journal of Applied Physics, 2006, 100, 103517.	1.1	25
43	Citric acid-assisted phase controlled synthesis of NaYF4:Yb3+,Tm3+ crystals and their intense ultraviolet upconversion emissions. Journal of Fluorine Chemistry, 2013, 156, 177-182.	0.9	25
44	Seed-mediated synthesis and SERS performance of graphene oxide-wrapped Ag nanomushroom. Scientific Reports, 2017, 7, 9795.	1.6	25
45	Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis. Journal of Applied Physics, 2015, 118, .	1.1	24
46	Dual-functional Fe3O4@SiO2@Ag triple core-shell microparticles as an effective SERS platform for adipokines detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 24-33.	2.3	24
47	Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. International Journal of Biological Macromolecules, 2019, 123, 261-268.	3.6	24
48	Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. Journal of Applied Physics, 2012, 112, 074309.	1.1	23
49	Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties. RSC Advances, 2015, 5, 68668-68675.	1.7	22
50	Different host-specific responses in thyroid function and gut microbiota modulation between diet-induced obese and normal mice given the same dose of iodine. Applied Microbiology and Biotechnology, 2019, 103, 3537-3547.	1.7	22
51	Tunable multichannel nonreciprocal perfect absorber based on resonant absorption. Optics Letters, 2012, 37, 2613.	1.7	21
52	Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals. Journal of Alloys and Compounds, 2014, 602, 94-100.	2.8	20
53	Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering. Optics Letters, 2011, 36, 3353.	1.7	19
54	SERS-based immunoassay using a core–shell SiO ₂ @Ag immune probe and Ag-decorated NiCo ₂ O ₄ nanorods immune substrate. RSC Advances, 2016, 6, 708-715.	1.7	19

#	Article	IF	CITATIONS
55	Photobleaching Fabrication of Microring Resonator in a Chromophore-Containing Polymer. IEEE Photonics Technology Letters, 2006, 18, 2221-2223.	1.3	18
56	Polarization-Independent Splitter Based on All-Solid Silica-Based Photonic-Crystal Fibers. Journal of Lightwave Technology, 2006, 24, 5082-5086.	2.7	17
57	A GaN-Based LED With Perpendicular Structure Fabricated on a ZnO Substrate by MOCVD. Journal of Display Technology, 2013, 9, 377-381.	1.3	17
58	Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram. Nanophotonics, 2017, 6, 1083-1092.	2.9	17
59	UV-light-assisted preparation of MoO3â^'x/Ag NPs film and investigation on the SERS performance. Journal of Materials Science, 2020, 55, 8868-8880.	1.7	17
60	Z-scan measurement of a novel amorphous molecular material. Optics Communications, 2001, 191, 427-433.	1.0	16
61	Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre. Journal of Optics, 2008, 10, 115304.	1.5	16
62	Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction. Nanoscale Research Letters, 2011, 6, 371.	3.1	16
63	Bifunctional 4MBA mediated recyclable SERS-based immunoassay induced by photocatalytic activity of TiO ₂ nanotube arrays. Physical Chemistry Chemical Physics, 2016, 18, 23795-23802.	1.3	16
64	SERS-based sandwich bioassay protocol of miRNA-21 using Au@Ag core–shell nanoparticles and a Ag/TiO ₂ nanowires substrate. Analytical Methods, 2019, 11, 2960-2968.	1.3	16
65	Design of all-solid large-mode area microstructured-core optical fibers. Optics Communications, 2010, 283, 3153-3157.	1.0	15
66	Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology. Optics Letters, 2010, 35, 1512.	1.7	15
67	Antifreeze protein detection using Rhodamine B as photoluminescence label inÂporous silicon. Current Applied Physics, 2013, 13, 736-742.	1.1	15
68	Polyhedron Cu ₂ O@Ag composite microstructures: synthesis, mechanism analysis and structure-dependent SERS properties. RSC Advances, 2016, 6, 99105-99113.	1.7	15
69	One-Pot Synthesis of Multi-Branch Gold Nanoparticles and Investigation of Their SERS Performance. Biosensors, 2018, 8, 113.	2.3	15
70	Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine, 2018, 13, 2245-2259.	1.7	14
71	Electrical Tuning of MoO _{<i>x</i>} /Ag Hybrids and Investigation of their Surfaceâ€Enhanced Raman Scattering Performance. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000499.	1.2	14
72	Observation of switching phenomena in a nonether polyphenylquinoxaline planar waveguide with two-wavelength nonlinear prism coupling. Optics Letters, 1997, 22, 1482.	1.7	13

#	Article	IF	CITATIONS
73	Ultra-strong surface plasmon amplification characteristic of a spaser based on gold–silver core–shell nanorods. Optics Communications, 2015, 338, 313-321.	1.0	13
74	Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO 2 film. Journal of Luminescence, 2016, 177, 387-393.	1.5	13
75	The synthesis of four–layer gold–silver–polymer–silver core–shell nanomushroom with inbuilt Raman molecule for surface–enhanced Raman scattering. Applied Surface Science, 2017, 426, 965-971.	3.1	13
76	Alterations of the Brain Proteome and Gut Microbiota in <scp>d</scp> -Galactose-Induced Brain-Aging Mice with Krill Oil Supplementation. Journal of Agricultural and Food Chemistry, 2019, 67, 9820-9830.	2.4	13
77	Effect of Polarization-Matched n-Type AlGaInN Electron-Blocking Layer on the Optoelectronic Properties of Blue InGaN Light-Emitting Diodes. Journal of Display Technology, 2013, 9, 244-248.	1.3	12
78	Greatly enhanced Raman scattering and upconversion luminescence of Au–NaYF 4 nanocomposites. Journal of Luminescence, 2014, 156, 164-169.	1.5	12
79	Light pulse propagation in one-dimensional photonic crystal: An FDTD analysis. Journal of Russian Laser Research, 2007, 28, 372-376.	0.3	11
80	Plasmonic octagonal quasicrystals for surface enhanced Raman sensing. International Journal of Higher Education Management, 2015, 1, 47-51.	1.0	11
81	SERS Biosensor Based on Engineered 2D-Aperiodic Nanostructure for In-Situ Detection of Viable Brucella Bacterium in Complex Matrix. Nanomaterials, 2021, 11, 886.	1.9	11
82	Reusable dual-functional SERS sensor based on gold nanoflowers-modified red phosphorus nanoplates for ultrasensitive immunoassay and degradation of CA19-9. Biosensors and Bioelectronics, 2022, 207, 114148.	5.3	11
83	Ultrasensitive SERS-Based Immunoassay of Tumor Marker in Serum Using Au–Ag Alloy Nanoparticles and Ag/AgBr Hybrid Nanostructure. Nano, 2018, 13, 1850001.	0.5	10
84	High Sensitive Z-Shaped Fiber Interferometric Refractive Index Sensor: Simulation and Experiment. IEEE Photonics Technology Letters, 2018, 30, 1131-1134.	1.3	10
85	Photoactive Control of Surface-Enhanced Raman Scattering with Reduced Graphene Oxide in Gas Atmosphere. ACS Nano, 2022, 16, 577-587.	7.3	10
86	Single-mode fiber refractive index sensor with large lateral offset fusion splicing between two abrupt tapers. Optical Engineering, 2012, 51, 090502-1.	0.5	9
87	Optimizing Au/Ag core–shell nanorods: purification, stability, and surface modification. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	9
88	4MBA-labeled Ag-nanorod aggregates coated with SiO ₂ : synthesis, SERS activity, and biosensing applications. Analytical Methods, 2015, 7, 8832-8838.	1.3	9
89	LSPR immuno-sensing based on iso-Y nanopillars for highly sensitive and specific imidacloprid detection. Journal of Materials Chemistry B, 2021, 9, 9153-9161.	2.9	9
90	Plasmonic Metasurfaces for Specific SERS Detection of Shiga Toxins. ACS Applied Materials & Interfaces, 2022, 14, 4969-4979.	4.0	9

#	Article	IF	CITATIONS
91	Coupling characteristics of three-core photonic crystal fiber couplers. Journal of Optics, 2009, 11, 015102.	1.5	8
92	A Novel WDM Component Based on a Three-Core Photonic Crystal Fiber. Journal of Lightwave Technology, 2009, 27, 2343-2347.	2.7	8
93	Design of novel power splitters by directional coupling between photonic crystal waveguides. Optoelectronics Letters, 2010, 6, 417-420.	0.4	8
94	Tamm states of oneâ€dimensional metalâ€dielectric photonic crystal. IET Optoelectronics, 2013, 7, 9-13.	1.8	8
95	Theoretical Analysis of the Mode Splitting Properties in Periodically Patterned Microring Resonators. Journal of Lightwave Technology, 2017, 35, 1700-1704.	2.7	8
96	Enhancement of the quantum dot fluorescence intensity by Au nanoparticle decoration of a porous silicon photonic crystal. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	8
97	Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 662-665.	0.8	7
98	Self-assembled structures of polyhedral gold nanocrystals: shape-directive arrangement and structure-dependent plasmonic enhanced characteristics. RSC Advances, 2016, 6, 57320-57326.	1.7	7
99	Further enhancement of SERS signals from Au@Ag@PSPAA core–shell nanoparticles surrounded by Ag nanoplates. Materials Chemistry and Physics, 2019, 225, 60-63.	2.0	7
100	Design and characteristics of a novel narrow-band filter with the dual-core photonic crystal fiber. Optoelectronics Letters, 2010, 6, 249-252.	0.4	6
101	Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis. Optics and Lasers in Engineering, 2018, 104, 252-258.	2.0	6
102	Electrically tunable SERS based on plasmonic gold nanorod-graphene/ion-gel hybrid structure with a low voltage. Carbon, 2022, 187, 425-431.	5.4	6
103	Determining the minimum number of arrayed waveguides and the optimal orientation angle of slab for the design of arrayed waveguide gratings. Optics Communications, 2003, 226, 181-189.	1.0	5
104	Different discrete soliton states in periodic optical induced waveguide lattice. Optics Express, 2007, 15, 6232.	1.7	5
105	Sensitive surface-enhanced Raman scattering activity of triple gold/silver/graphene oxide nanostructures decorated on gold nanowire arrays. Materials Research Express, 2018, 5, 015013.	0.8	5
106	Nonreciprocal Channels of Light Through the Coupling of Two Nonsymmetric Tamm Magnetoplasmon Polaritons. IEEE Photonics Journal, 2014, 6, 1-11.	1.0	4
107	Enhanced photoluminescence from porous silicon microcavities by rare earth doping. Optoelectronics Letters, 2016, 12, 5-7.	0.4	4
108	The seeded-synthesis of core–shell Au dumbbells with inbuilt Raman molecules and their SERS performance. Analytical Methods, 2017, 9, 4394-4399.	1.3	4

#	Article	IF	CITATIONS
109	Decrease of amplified spontaneous emission threshold achieved by core–shell Ag nanocube@SiO2with ultrasmall shell thicknesses. Materials Research Express, 2017, 4, 115030.	0.8	4
110	Hollow Ag dendritic nanoplates with serrated inner surfaces for sensitive SERS-based detection. Materials Research Express, 2019, 6, 105053.	0.8	4
111	Real-Time Surface-Enhanced Raman Scattering Tracking of Adenine–Gold Charge Transfer Complex Formation on Nanocavity-Shaped Plasmonic Crystals. Journal of Physical Chemistry C, 2019, 123, 17961-17967.	1.5	4
112	Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Science China: Physics, Mechanics and Astronomy, 2011, 54, 240-244.	2.0	3
113	Design of single-mode large-mode area bandgap fibre with microstructured-core. Optics Communications, 2014, 330, 117-121.	1.0	3
114	Facile synthesis of noble metal decorated carbon nanostructure for SERS detection. Journal of Raman Spectroscopy, 2022, 53, 49-57.	1.2	3
115	High-directionality spin-selective routing of photons in plasmonic nanocircuits. Nanoscale, 2022, 14, 428-432.	2.8	3
116	Surfactantâ^`free synthesis of flowerâ^`like Au NPs/Au island hybrid substrate for quantitative SERS detection of pesticide residues on fruit. Journal of Alloys and Compounds, 2022, 918, 165706.	2.8	3
117	Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material. Optoelectronics Letters, 2012, 8, 97-100.	0.4	2
118	Gain-assisted U-shaped Au nanostructure for ultrahigh sensitivity single molecule detection by surface-enhanced Raman scattering. Journal of Optics (United Kingdom), 2015, 17, 125003.	1.0	2
119	Effects of the Sex Factor on Mouse Iodine Intake: Interactions between the Gut Microbiota Composition and Metabolic Syndromes. ACS Omega, 2021, 6, 28569-28578.	1.6	2
120	UV-light-assisted synthesis of CeB6@Ag nano-trees for SERS application. Journal of Rare Earths, 2021, ,	2.5	2
121	Fractal characteristics of far-field diffraction patterns for two-dimensional Thue-Morse quasicrystals. Optoelectronics Letters, 2011, 7, 346-349.	0.4	1
122	Sythesis, Modification, and Biosensing Characteristics of Au ₂ S/AuAgS-Coated Gold Nanorods. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
123	Three-arm windmill plasmonic nanoantenna: polarization and symmetry-dependent optical characteristics. , 2018, , .		1
124	Tunable absorption characteristics in multilayered structures with graphene for biosensing. Journal of Innovative Optical Health Sciences, 2020, 13, 2050017.	0.5	1
125	New design of the low crosstalk and low-loss AWG with optimal waveguide separations and orientation angle of slabs. , 2006, 6149, 554.		0
126	Fabrication of polymer integrated optical microring resonator with photobleaching method. , 2007, , .		0

#	ARTICLE	IF	CITATIONS
127	Design of novel 1×4 power splitter by directional coupling between photonic crystal waveguides. , 2011, , .		ο
128	Ultra-compact resonator with orthogonally polarized dual-wavelength output based on layered epsilon-negative and anisotropic materials. Journal of Russian Laser Research, 2011, 32, 604-608.	0.3	0