
Pankaj Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Use of Sewage Sludge and Plant Growth-Promoting Rhizobia Improves Germination, Biochemical Response and Yield of Ridge Gourd (Luffa acutangula (L.) Roxb.) under Field Conditions. Agriculture (Switzerland), 2022, 12, 173.	1.4	3
2	Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. Journal of Fungi (Basel, Switzerland), 2022, 8, 112.	1.5	24
3	A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geoscience Frontiers, 2022, 13, 101373.	4.3	9
4	Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae, 2022, 8, 316.	1.2	23
5	Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. Journal of Fungi (Basel,) Tj ETQq1 1 0.78431	41gBT /O	vezkock 10 T
6	Foliar use of TiO2-nanoparticles for okra (Abelmoschus esculentus L. Moench) cultivation on sewage sludge–amended soils: biochemical response and heavy metal accumulation. Environmental Science and Pollution Research, 2022, 29, 66507-66518.	2.7	5
7	Biotransforming the Spent Substrate of Shiitake Mushroom (Lentinula edodes Berk.): A Synergistic Approach to Biogas Production and Tomato (Solanum lycopersicum L.) Fertilization. Horticulturae, 2022, 8, 479.	1.2	27
8	Experimental and optimization studies on phycoremediation of dairy wastewater and biomass production efficiency of Chlorella vulgaris isolated from Ganga River, Haridwar, India. Environmental Science and Pollution Research, 2022, 29, 74643-74654.	2.7	6
9	Sustainable Upcycling of Mushroom Farm Wastewater through Cultivation of Two Water Ferns (Azolla spp.) in Stagnant and Flowing Tank Reactors. Horticulturae, 2022, 8, 506.	1.2	9
10	Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /4	D∎uesrlock I	107Tf 50 377
11	Effect of supplementing biochar obtained from different wastes on biochemical and yield response of French bean (Phaseolus vulgaris L.): An experimental study. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102432.	1.5	2
12	An experimental investigation on phytoremediation performance of water lettuce (<i>Pistia) Tj ETQq0 0 0 rgBT /C 93, 1543-1553.</i>	verlock 10 1.3	0 Tf 50 307 21
13	Integrated use of treated dairy wastewater and agro-residue for Agaricus bisporus mushroom cultivation: Experimental and kinetics studies. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101940.	1.5	19
14	Kinetics of nutrients remediation from sugar industry effluent-treated substrate using Agaricus bisporus: mushroom yield and biochemical potentials. 3 Biotech, 2021, 11, 164.	1.1	6
15	Kinetic assessment of aerobic composting of flower waste generated from temple in Jammu, India: a lab-scale experimental study. Environmental Sustainability, 2021, 4, 393-400.	1.4	2
16	Insights into hazardous solid waste generation during COVID-19 pandemic and sustainable management approaches for developing countries. Journal of Material Cycles and Waste Management, 2021, 23, 2077-2086.	1.6	36
17	Modeling of mineral elements uptake and localization in cabbage inflorescence (Brassica oleracea var.) Tj ETQq1 2021, 193, 586.	l 0.78431 1.3	4 rgBT /Ove 5
18	Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. Environmental Research, 2021, 200, 111373.	3.7	24

Pankaj Kumar

#	Article	IF	CITATIONS
19	Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. Journal of Cleaner Production, 2021, 318, 128451.	4.6	40
20	Electrokinetic assisted anaerobic digestion of spent mushroom substrate supplemented with sugar mill wastewater for enhanced biogas production. Renewable Energy, 2021, 179, 418-426.	4.3	20
21	Use of sugar mill wastewater for Agaricus bisporus cultivation: prediction models for trace metal uptake and health risk assessment. Environmental Science and Pollution Research, 2021, 28, 26923-26934.	2.7	15
22	Experimental and Kinetics Studies for Biogas Production Using Water Hyacinth (Eichhornia crassipes) Tj ETQq0 0	0 rgBT /C 1 .3	verlock 10 Tf
23	Potential of water fern (<i>Azolla pinnata</i> R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International Journal of Phytoremediation, 2020, 22, 392-403.	1.7	31
24	Regression models for removal ofÂheavy metals by water hyacinth (Eichhornia crassipes) from wastewater of pulp and paper processing industry. Environmental Sustainability, 2020, 3, 35-44.	1.4	14
25	Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined physical, microbial and chemical pretreatments. Bioresource Technology, 2020, 297, 122484.	4.8	52
	Optimization of PGPR and silicon fertilization using response surface methodology for enhanced		

24	Regression models for removal of Aheavy metals by water hyacinth (Eichhornia crassipes) from wastewater of pulp and paper processing industry. Environmental Sustainability, 2020, 3, 35-44.	1.4	14
25	Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined physical, microbial and chemical pretreatments. Bioresource Technology, 2020, 297, 122484.	4.8	52
26	Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101463.	1.5	39
27	Predicting heavy metals uptake by spinach (Spinacia oleracea) grown in integrated industrial wastewater irrigated soils of Haridwar, India. Environmental Monitoring and Assessment, 2020, 192, 709.	1.3	14
28	Effects of treated sugar mill effluent and rice straw on substrate properties under milky mushroom (Calocybe indica P&C) production: Nutrient utilization and growth kinetics studies. Environmental Technology and Innovation, 2020, 19, 101041.	3.0	10
29	Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environmental Technology and Innovation, 2020, 17, 100627.	3.0	30
30	Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Scientia Horticulturae, 2019, 257, 108682.	1.7	52
31	Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Environmental Science and Pollution Research, 2019, 26, 14400-14413.	2.7	40

Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia) Tj ETQq0 0 0 rgBT / $\frac{1}{1.4}$ f 50 222

33	Response surface methodology based electro-kinetic modeling of biological and chemical oxygen demand removal from sugar mill effluent by water hyacinth (Eichhornia crassipes) in a Continuous Stirred Tank Reactor (CSTR). Environmental Technology and Innovation, 2019, 14, 100327.	3.0	28
34	Modeling of water hyacinth growth and its role in heavy metals accumulation from unoperated old Ganga canal at Haridwar, India. Rendiconti Lincei, 0, , 1.	1.0	7